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Refined similarity hypothesis and asymmetry of turbulence
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An experimental study of atmospheric turbulence and turbulent pipe flow reveals some deviations from the
refined similarity hypothesié€RSH), in addition to those already known. Special emphasis is placed on study-
ing the turbulence asymmetry, as it has proved to be a sensitive indicator of this deviation. It is found that, in
spite of good correlation between the velocity incrementnd the dissipation fielgl, the typical amplitude
of the latter is appreciably smaller than that of the velocity increments for violent events. In the framework of
the RSH, the quantity=u/y is supposed to be statistically independent of the dissipation. The study shows
that there is some weak dependence, manifested at least in a correlation between the\signdothe
amplitude of the dissipation field. We suggest some modification of the measure in defining the dissipation
field, so that the asymmetry can be treated in a self-consistent way in the framework of the RSH.
[S1063-651%98)04908-3
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[. INTRODUCTION aim of the paper is to provide an experimental study of the
asymmetry-related deviations from the RSH, i.e., the devia-

Self-similar properties of turbulence have been studied fotions from self-similarity of the distributiop(V|r), suggest-

a long time. In particular, Kolmogorov suggested scalinging an attempt and self-consistent treatment of asymmetry in
laws for the velocity increment structure functioisy (r is  the framework of the RSH.

the distancg and that is now calle&k41 theory[1]. It was As, on the other hand, the asymmetry appeared to be re-
later understood that the theory implies relatively simple stalated to the intermittency, this study may give some addi-
tistics. Roughly speaking, the predicted scaling correspondigonal insight into the problem of intermittency. In spite of
to a nonintermittent system, and that in turn corresponds tguite intensive recent experimental studies to verify the RSH
self-similar probability distributiongp(A,v/((A,v)?)*r):  [10-15, the asymmetry aspects of this problem were not
i.e., this function is independent of and is universal. addressed in detail.

On the other hand, the intermittency of the turbulence Section Il is introductory as well, describing the methods
corresponds to a deviation from simple self-similarity. Kol- used in the paper. The asymmetry aspects of the RSH are
mogorov’'s refined similarity hypothesi®iRSH) does allow given in Sec. lll. A brief review of previous experimental
the intermittency[2], and therefore the requirements of self- results relevant to this problem are given in Sec. IV. Some of
similarity are modified. Indeed, this time, the distribution the deviations from simple self-similarity of the velocity in-
p(V|r), where V=A,v/(re,)*?, is supposed to be self- crements PDF listed in Rei], and in other previous papers,
similar, that is, the distribution is an universal function, in also correspond to the deviations from the RSH, and they are
particular independent of (see also Ref.3]). briefly repeated in this section, thus slightly overlapping with

Strictly speaking, the Kolmogorov laf#], found in 1941, Ref.[9]: otherwise the description would not be complete. A
already implies that the probability distribution function comparison of the dissipation field with that of the velocity
(PDP p(V|r) does depend or at least, it depends ard|r|.  increments is given in Sec. V. The difference between them
This deviationa priori has been considered to be small. Tra-is analyzed in Sec. VI. Sections VIl and VIl are devoted to
ditionally, this asymmetry was interpreted as a manifestatio@n evaluation of the moments ®f distribution. It is shown
of turbulent energy cascade to the small scilds that the moments are functions of the distancehus pre-

It was recently suggested that the asymmetry may be alsgenting a deviation from the RSH. The odd moments show
related to the deviation from self-similarifp—9]. It became  positive skewness, described in Sec. VIII, thus revealing
clear that the asymmetry is manifested mainly in the PDF’ssome correlation between thefield and the dissipation. A
tails [9], responsible for the intermittency. Connecting thepossible way to reconcile with the RSH is suggested in Sec.
intermittency of the increments with that of the dissipation!X. The key point is to modify the dissipation measure. Fi-
field y via the RSH, we conclude that the latter should benally, the main conclusions are given in Sec. X.
asymmetric as wellin fact, there are some experimental
indications that this is indeed the caf). Asy=0, and |, hrgepipTION OF THE METHOD AND DENOTATIONS
therefore the sign of the velocity increments is defined by the
V field only, the asymmetry foy implies that the value of The measurements of atmospheric turbulence were per-
“knows” about the sign of theV field; that is, there is some formed at Yale University. The Taylor microscale Reynolds
correlation betweey and theV field. However, this contra- number is estimated to be 9540. The data set consisting of
dicts the RSH, as in its framework these two fields should bel0 000 000 data points was divided into four files; below we
statistically independent. Thus the asymmetry properties olvill refer to them as runé\, B, C, andD. We use Taylor’s
turbulence have so far not been treated self-consistently. THeypothesis in interpreting the data; that is, the time series is
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treated as a one-dimensional cut of the proagéss more  and
detail, see Ref[9]). We also use the data from a pipe turbu-

lence (from Yale University as wej| with 2 000 000 data o (<8>r)1/3 5

points, and the Reynolds number is estimated to be 230 000. N <(Arv)2>172' ®)
These data are used only once: just to check the third mo-

ment ofV distribution (see Sec. VII). In a fairly good approximation, the coefficief is a con-

We study the statistics of velocity increments for differentstant, andC= 1/C§’2, whereC, is the Kolmogorov constant,

distances. All the distances are given in terms of Kolmog- C,=2=+0.4. In these calculations, however, the intermit-
orov scalen. We measured the velocity increments for 12tency correction is included, that is,
distances, uniformly distributed betwear»=133.3 and
1600.0. All these distances are well inside the inertial range, r
the integral scalé being estimated ds=86 671;. That was <(Afv)2>=c2(<8>r)2/3( T) ©®)
for the atmospheric turbulence. As to the pipe experiment,
the inertial range is shortébecause the Reynolds number is [3]. As u,= —0.04, the coefficien€ is strictly speaking not
lesg, and therefore we picked another set of distancesa constant, depending weakly on
roughly corresponding to that for the atmospheric turbu-
lence. The smallest distancerisn=31.6, and the largest is c— 1 [r|700%
r/ »=379.8, the intermediate points being uniformly distrib- “cP\r
uted between these two. We will also ugg corresponding
to the smallest sample distance: some of the measuremeniserefore, we will study the distribution function for
are provided by this.
The dissipation field is defined as usuake, e.g., Ref. _u
[5D), V= Cy’ 8

)

1 The central part of a PDF, within three standard devia-
&r=(p J e(X)dx, @) tions, we call the “core.” Everything beyond this we will
call “tails,” provided the values there are anomalous: either
whereD is the dimension of space. As we deal with a one-substantially exceeding Gaussian values, or anomalously de-
dimensional cut of the process, we imdly=1 in all the  pending orr. The distributions containing tails we call “sin-
formulas; the letteD is kept just for a possible generaliza- gular.” We also recall that the tails usually correspond to the
tion of the formulas used below. The dissipation is also unintermittency. At least, that is the case for the velocity incre-
derstood as one dimension@ind sometimes called pseudo- ments PDF’s.
dissipation; that is, We will consider both structure functions,

e=15v(dw)?, Sn(r)=<Arv”>~rSCI, 9

(v is the kinematic viscosiy which is relevant for isotropic Wheren is a positive integer, and generalized structure func-
processes. To be more specific, we write Bg.as follows:  tions,

1 fxﬂ,z Sy(r) =(|Av|¥)~réa=r 3" H, (10)
g== e(x)dx. (2
x=rl2 where the intermittency corrections, are defined by the

. ) Lo issipation fiel
According to the refined similarity hypothegig], the ve- dissipation field

locity incrementA v =v(Xx+r)—v(X) obeys the equation <8q/3>~r—Mq:—(D—Dq,3)(q/3—1) (11)
r 1

113

_ 1/3_ 1/ _| & andD, are the generalized dimensiofisb].
A =Ven)B=V(e)N ™,y (<8>) - © We can write the joint PDF’s

whereV is a random function statistically independentsof 1

In addition, the PDF foV is supposed to be a universal p(U,Y|r):a Pv

function. In a somewhat more relaxed form, this universality

is understood as the independence of the distanes well

as the independence of the dissipati@h Let us write Eq.

(3) in dimensionless form,

u
C_y) py(y|r)

Ay (UM=CV (") and (Jul%)=CH|V|[TNyY),
(a0 B we have

1 u
p(u,VIr)=py(V) =7 py<—
u=CVy, (@ Clvi ™ ev

As
where
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Sn(r)=82(r)“’2f u"P(u,y|r)du dy,

5,0 =5:1)% [ [ulP(uyIrdu dy
12
5= [ (awPa0yindsw oy

It is clear from Eq.(12) that theK41 scaling[1] corre-

sponds to the case when is treated as a constant; that is,

(y9) is independent of, or p,(y|r)=46(y—1). More gen-
erally, theK41 scaling is recovered ff,(y|r) is a function
of y only. Indeed, in that case,

Sn(1) =Cu({e)r)™1,  Sy(r)=Cq({e)r)%u.
It follows from the Kolmogorov law[4] that, in the inertial

range, and fon=3,

S3(r)=—35(e)r, (13
and thereforel; =%, recoveringK41.

In the framework of the RSHy,(y|r) might be a function
of bothy andr, and it is assumed that all momerjtg') are

scaling~r ~#a. Therefore,

r\ #n _ o3 r Mq
T ) Sq(r)_cq(<8r> 1
(14

Sn(r) :Cn< <8r>n/3

Thus, in the framework of the RSH, the P%(y|r) is not
just a function ofr. The distribution is supposed to lsin-
gular. In particular, the flatness,

Sy(r) [r
S(n? 1T

is larger than, say, the Gaussian valuecpnst=3), and, as

—(D—Dyjg)/3—(D—Dy)2/3
. (19

F(r)=

seen from Eq(15), is a power law. As the exponent is nega-

tive, this function is growing with decreasing distanceand
it is maximal at the Kolmogorov scale. Large flatness

means, in turn, that the velocity increments are intermitten

REFINED SIMILARITY HYPOTHESIS AND ASYMMETRY . ..

{Obviously, in the framework of the RSH, ea
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from the Kolmogorov law(13) that the third order structure
function does not vanish. There is also strong experimental
evidence that all other odd moments also do not vanish
[17,6]. All this implies thatpy(V) is asymmetric. On the
other hand, the PDF obviously obeys the rule

py(—=V|=r)=py(V|r),

and therefore, if the PDF is independent of then
pv(—V)=py(V); that is, it should be symmetric. Since the
real PDF is not symmetriisee Eq(13)], we conclude that it
should have some dependencerorat least, it should de-
pend on the sign of. That is,

r
where y=—,

] (16)

pP(V[r)=p,(V,y)=py(yV)

cf. Eq.(16) in Ref.[9]. Thus, even if the RSH is satisfied, the
PDF p(V|r) does depend onr, although weakly: it
“knows” only about the sign of . In principle, however, the
PDF can be a universghsymmetrig¢ function, in the spirit of
the third Kolmogorov hypothesis. The aim of this paper is to
verify if the PDF depends on only weakly, as in Eq(16).

We will also consider positive and negative velocity in-
crements separately. That means, we consider

s;<r>=f:mrv)‘*pmrvn)dmu,

0
s 0= [ 18l elndse.

Then, analogously to Eq12), we have

Sy (1) =Sy(r)¥2(Vay = (y%),

(17)

o 0
V= [vepuviav, v = |1 Vispuvav.

(r) func-

In this case, the PDF for both the velocity increments and fofion has the same scaling &5 (r), and they both have the
y, that is, for the dissipation field, should contain tails. ThusSame scaling asq(r): only the prefactors are different. In
the intermittency corrections appear in the framework of theaddition, S ~r; that i is, they both possess the scaling of the

RSH only due to the intermittency of the dissipation figld
and hence, the PDB(V|r) is not expected to have any tails.

Kolmogorov Iaw
We denoteu™ andu™ -positive and negative increments,

Indeed, the PDF was suggested to be Gaussian, with song@rrespondingly. These are functionsoéndr. We denote

small deviations due to asymmetr¥1]. For this reason, in
this paper we focus mainly on the tails of the PDF'’s.

It is obvious from Eq(14) that the scaling exponents are + E
the same both for structure functions, and for generalized y r

structure functions: the difference is only in prefactGs

andC, (and they might be different for oda). In particular,

{3=&3=1, that is, the intermittency correctiqn; vanishes.
Ill. RSH WITH EMPHASIS ON ASYMMETRY

It is clear from Eq.(12) that, becausg is non-negative,

all odd moments of the structure functions should vanish if

the PDFpy(V) is an even function. However, it follows

corresponding dissipation fields lyy ;

fx+r/2 e(x|ut#0) )1’3
= ——dx]| ,
X—r/2 <€>
(1 x*r2 g(x|u” #0) 13
y _(forlz <8> dx) ’
According to Eq.(17),
Sg(r)  ((u)h (vh™
Si(n (s qvayr ot (19
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The structure functions of a low order, or in particular, of comparison of these corollaries with experimental results,
zeroth order, can be studied in detail, because of good statisdding to it a more complete interpretation.
tics. It follows from Eq.(17) that

" 0 IV. EXPERIMENTAL VALIDATION: BRIEF REVIEW
Saf(r):f py(V)dV, Sa(r):f py(V)dV, (19 OF PREVIOUS RESULTS
° - Experimental studies and direct numerical simulations
so that these two structure functions should be constant. testing the RSH started only recen{l§0-15. Basically,

Finally, we consider flatness for positive and negative disthere are strong supports for the RSH, both experimentally

tributions separately, which is, in the framework of the RSH,and numerically. However, some deviations from the hy-
pothesis were found as well, and we discuss these below,

Sy (r)  [r)| (P~D4gl3-(D-D232/3 mostly in the next sections.
=W~ T (20) We are more interested in asymmetry-related matters,
and, as the asymmetry is manifested mainly in the tails of the
Comparing with Eq(15), we see that the dependence of

PDF’s, we are going to focus on these. The first prediction
F*(r) should coincide with that oF () (although the pref- following from Eqg.(14), that the exponents for the odd order
actors could be different

structure functions and generalized structure functions coin-
We note that all asymmetry effects should disappear agide, .generall_y fails: this s_tatement hold_s only for the third
the distance becomes large. That is, whexpproaches, the order; otherwise, fo.r the higher orde@, IS ;ystemqﬂcally
asymmetry is expected to decrease, andrfall it should larger than,, [6]. This trend was explained in R¢b] in the
vanish. Indeed, for large distances, the increment is a sum

&amework of the so-called ramp model. Further studies of
two independent variables, and therefore the statistic be!US-minus structure functionS, (r), revealed that their ra-
comes independent of and, in particular, independent of

the sign ofr; see, e.g., Ref[9]. This means that all odd

tios are not constant, in violation of E¢L8); see Fig. 3 in
Ref.[7]. We note two types of deviations from a constant in
moments vanish, and the ratio in E48) becomes unity. In
particular,

F=(r)

this figure. First, there is a trend of decreasimgreasing
ratio forg>1 (q<1) with increasing distance. Second, there
are large bumps on the curves. The first trend seems to be
Ss—1 atr=l. (21)  expected: all curves should approach unity for large dis-
tances; see the end of Sec. Ill. However, that should be true
We now summarize the information concerning expected®utsidethe inertial range, at very large distances, whereas the
properties of the distributions. The K41 theory corresponddrend is observed inside the range. On the other hand, if a

to self-similar PDF for the velocity increments, quantity substantially exceeds unity at small distances, as in
Fig. 3 in Ref.[7] for g>1, and it should asymptotically

A approach unity at large distances, then one would naturally

p(Aw|r)=P W) expect that this quantity would monotonously decrease “as

soon as possible.” In other words, it would be surprising to

i.e., the PDF can be written as a function of one variablefind a quantity that is strictly constant, substantially exceed-
instead of two(A,v, andr); see, e.g., Ref9]. This would Ing unity all over the inertial range, and then decreasing rap-
correspond to nonintermittent turbulence. In the RSH, thddly at r=I. As the real quantity does follow “common
intermittency is allowed, and now the distribution fgris ~ Sense,” i.e., does decrease in inertial range, it suggests an
supposed to be universal; that is, idea that the weak violation of the RSH—that is, th&V|r)
does depend on as in Eq.(16)—is indeed not as “inno-
cent” as it seems. Apparently, this violation, althouaylpri-
=Py(V), ori seemingly weak, might result in substantial deviations
from the RSH. This trend of decreasiricreasing ratio
apart from a weak dependence, as in EL6). This func- with growingr can be easily'explained in the framework of
tion P(V) is not expected to possess any tails, and is exthe ramp mode[6]. Indeed, if we suppose th&f (r) and
pected to be Gaussian-like, although not exactly, because &, (r) scale differently, so that
needed asymmetry.
The major difference between K41 and the RSH is allow- D,<Dg, (22)
ing the intermittency in the latter. In spite of the fact that the
difference is of vital importance, some of the corollariesthen the ratio should decrease fgr-1, and increase for
listed in this and previous sections, following from the RSH,q<1, in both cases approaching unity: exactly as in Fig. 3 of
coincide with those that follow from requirements of self- Ref.[7]; see also Fig. @) in Ref.[9].
similarity of the PDF for the velocity increments. For in-  Another comparison with the RSH is provided by the
stance, as seen from E(}.8), the ratio of the positive and measurements of the flatness. It is found that, indeed, the
negative parts of the increments should be constant; this iatness decreases with as in Eq.(15); however, the flat-
also true for self-similar PDF’§9]. In other words, some of ness for positive and negative distributions does not follow
the statistical properties are identically the same both for th&q. (20): see Fig. 18) in Ref.[9]. That is, ther dependence
K41 theory and for the RSH. In Sec. IV, we will have to is different for F*(r) and F~(r), and these two functions
repeat in part the analysis given in RE9)], concerning the differ from F(r).

r

A
PG
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We now return to the second type of deviation from a
constant observed in Fig. 3 of R€f7], namely, that the 1o
curves are not smooth. This in turn returns us to the discus
sion of a more general observation that the odd moments
usually exhibit poor scaling, and quite scattered data; see °
e.g., Ref.[9]. As a well known example, we mention the £
third momentS;(r). Indeed, the scaling for the Kolmogorov
law [Eq. (13)] is usually worse than the scaling f8(r), in
spite of the fact that the Kolmogorov law should be satisfied ™ g o o oot
a priori, while S3(r)~r scaling is an assumption. The sim- Ordinal number
plest explanation is that the core of the PP@,v|r) (that 50
is, about 99% of evenkss approximately symmetric; see,

e.g., Figs. 5 and 6 in Ref8]. Therefore, the overwhelming

T
(@) . Big increments
" Corresponding y

run A

2
TR T

-5

L

3

e
=

r ()

majority of events makes a contribution to the generalizec, *°F oo 'ju”:j//jyfj E
structure function§q(r)zsg(r)JrS;(r), providing a good % 15 ek *P(@j-n)) =
g - - PLU Y

statistic, whereas the odd moments do not vanists 1‘0;
[Sn=S.(r)—S, (r)#0] due only to the asymmetry sup- Wb
plied by the tails, that is, only by 1% of events. Still, this ¢ et T
explanation is at least incomplete. The thing here is that the *°t e e
plus-minus structure functions also do not behave well, ana e o e P
definitely worse tharBy(r) [9]. If we write S;(r)zsg(r) FIG. 1. (a) Depicted are all the tail events, that is, with =3,
+n§(r), WhereS(f(r) corresponds to the “true” scaling, as and corres;ponding dissipation fie_id Erom the runA. It can be

in Ref. [14], and n;(r) is a noise, appearing for one or seen thau~ are well correlate_d \_Nltry—, _although the peaks of
another reason, then we might expect that the noises afs¢ Substantially smaller. This is confirmed Wy, where these
statistically independent for the plus and minus distributionsCorrelatons are depicted for all runs. The rat(m$>/<y7>’ also
Then the error propagation would result in a summing up Oﬁjeplcted, are indeed substantially larger than unity. Ghecorre-
the noises for these two distributions. and therefor ation is negative, although small. All curves on this plot correspond

%O the tails of the velocity increment PDF fofn=266.7.
Sq(r)zsg(r)JrS;(r) would behave worse tha.‘B;(r) and y 7

S, (r) separately. As this is definitely not the case, it is ap-velocity increments, and therefore we consider them here in
parent thatn_ (r) and ng (r) are correlated, and therefore more detail. The tail increments fof »=266.7 from runA
they should not be called “noises,” but rather “fluctua- are depicted in Fig.(®). It can be seen that the peaks|of
tions.” Indeed, as observed in RdB] for the lowest mo- practically coincide with those of the corresponding dissipa-
mentS; (r), even a slightest increase g (r) is accompa- tion fieldy, although the amplitude of the latter falls short of
nied by decrease of, (r), and vice versa, so that these two that of the increments. To pursue this more quantitatively,
p|ots forsa'(r) and forsa(r) are mirror Symmetri¢see F|g we plOt the relevant correlations in qulﬂ. We S-ee that the

2 in Ref.[8]). This can be explained as well: if the length of correlationsp(y™,u™), andp(y~,u") are quite high. Recall
the accelerated part the ramp happens to be Iqsyealley  that the correlation coefficient is defined as

than usual, then it may happen only at the expense of the ((a—(a))(b—(b)))

decelerated lag of the ramp, so that the latter has to be (a,b)= )
smaller(largep. As a result, the fluctuations are canceled for V((a—(a))?)V{(b—(b)))?)

the suqu(r)zsg(r)JrSc;(r), while they remain the same

for each of the structure functior®! (r) and S; (r); the : . . -
sum up for the ratiq18), giving th?lvflo)rst scal?r1(g)AII th)gs considered as high, because, if we calculate the coefficient
' y for random numbers with the same number of elements

gggg\g?:r?; ?g;ﬂ ;Tsetn; :z;’:o;ssﬂ:mztt&.substantlal Contrlbu_(about 120000 in gll four runsthis coefficient WOU!d be

As follows from Eq.(19), the structure functions of zeroth WO Orders of magnitude less. It can be seen that typically the
order should be constant in the inertial range. On the othef(Y U ") correlation is slightly better thap(y",u ™). Itis
hand, according to Eq21), they should approach whenr also_apparent fr_om the flgure_ that, in spite of this good cor-
approaches the integral scale. However, since the valud§/ation, the typical value of is substantially less than that
Sy (ro) are different, and they differ substantially frof of |ul.

the curves ofSz () do follow common sense. That is, the Further insight into this comparison gives Fig. 2. Here the
. . ' 15, Y e p(y|r) is directly compared with the positive and nega-
vary monotonously with distance, only asymptotically ap-

proaching}: see Fig. 2a) in Ref. [8]. The second trend of tive parts of the velocity increments PDF’s, for different dis-

: d fluctuationga d wit lis al tances. On the other hand, this PDF is compared with two
increased fluctuationgas compared wittSo(r)]is also no- o nqinoiar PDF's, which would appear if the distribution of
ticeable in this figure.

the velocity gradientw=d,v(Xx) is Gaussian. In the latter
case,

The correlation coefficienttypically ~0.5) can indeed been

V. ANALYSIS OF THE DISSIPATION FIELD TAILS

As we saw, the key to understanding both intermittency p(w)= o w2
corrections and asymmetry lies in the tails of the PDF for the N2
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FIG. 2. Probability densities extracted from rAn The PDF's for the dissipation fielg are compared with these for the positive and
negative velocity incrementg(u*|r), andp(u~|r). The distances are given in terms of Kolmogorov length while the assumed values
are expressed in terms pf|. G, stands for a distribution with Gaussian= d,v. Finally, we compare thg distribution with the Gaussian,
centered afy), and with variancy?)-(y)?2.
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(w is now normalized on its rmsand therefore one of these 10— — . —
two distributions, corresponding to the smallest distange .
would read 107!

T

[ plulr)
p(v 1)
I CAME AR

,,,,,, Gaussian

3yl/2 3
p(Y|ro)=Gau(y)= on e V7 (23)

r/n=1066.7

-3

=3

The second nonsingular distribution should appear at larg
distances. Indeed, the autocorrelatioa(x+r)w(x)) de-
creases substantially on one Taylor microscale length
Therefore, on distances substantially exceedingneasure 10-5 ‘
(2) would present a sum of independent variables, and there E ' i :
fore its distribution is normal as well: ’

Probabllity distributons

T[T T T
Ccond cml ol il il s

1078 i P T

Assumed values

—Ty— () 122([y—(y)1?
e Ly~ -01%), FIG. 3. The PDF’s from the data extracted from #inThe tails

for p(V|r) distribution are clearly above the tails for the velocity
increments PDF.

1
S | [ —
PN =

(24

Thus, if w is Gaussian, then the PDg{y|r) is a function

which lies in between these two distributio(®3) and (24).  values of y should be larger than the increments in
Any real distribution substantially exceeding these two at,/C,~V2 times.

say,y=3, we can call a “tail,” and, if the tail exists, we can To see that thé/ distribution is indeed not satisfactory,
refer to this distribution as “singular.” These two distribu- we show one example of the PDF fdrin Fig. 3. Obviously,
tions happen to be quite close to each other for all consideretthere are tails in the PDF fov: this is guaranteed because
distances, as seen from Fig. 2, so that the comparison withthe PDF p(V|r) is abovethe velocity increments PDF's.
nonsingular distribution is straightforward. It is obvious from Also depicted isp(V,|u|=3]|r), the tail part of the PDF. It
the figure that the dissipation field distribution is singularbehaves as a conditional PDF for the tgiéV||u|=3r)
indeed for all these distances. This fact is well known, how{that is, for events depicted in Fig(g)], but normalized in
ever. Indeed, if thev distribution is Gaussian, then the auto- such a way that it can fit the plot: otherwise, the PDF should
correlation (e(x+r)e(x)) would decrease with distance be 70 times higher. Indeedp(V,|u|=3|r)=p(V||u
even faster than the correlatiofw(x+r)w(x))~r~*3  |=3r)p(lu/=3|r) and p(Ju/=3|r)~%. We can see that,
namely,(s(x+r)e(x))~r 83 [18]. However, the real cor- again, the tails of th&/ distribution are higher than these for
relation falls off much slower(s(x+r)s(x))~(sf~r’“, the increments. This picture is typical of all distances given
whereu=0.25+0.05; see, e.g., Ref3]. The exponenieis  in Fig. 2, and is not repeated here. Of course, the large values
called the intermittency exponent, because it is directly reof increments|u|> 3, say, are not matched by equally large
lated to the generalized dimensi@y,, namely,D,=1—u  values ofy, as we saw above. Therefore, their ratio, defining
[19]; see also Ref.20]. V, is still large, and that forms the tails of the PDF.

Thus the dissipation field is singular. However, as seen The singularity of theV distribution does not make sense
from Fig. 2, it is “not singular enough.” Indeed, the tails, in the framework of the RSH, and therefore, not violating the
although they do exist, present some events up=tal—-5, spirit of the RSH, we may as well write
and, after that, no events were observatthough the PDF
was constructed up tg==8), while there was a number of A =1CoVy(e,r)*? (25
events with|u|>5. This feature corresponds, of course, to, .
the plots in |Fi|g. 1. In addition, as seen from Fig. 2, the tailsmstead of Eq(3). The new variable/y,
aty=3 are still below the tails for the velocity increments: A
they are approximately one order of magnitude less. iV :—fv,

Note the main trend of the dissipation field: the tails de- " JCye,n)3
crease with increasing distance. This, of course, is expected,
because the role of the intermittency decreases with growintef. EQ. (8)] seems to be more “natural.” Indeed, the ex-

r, and this was observed before; see, e.g., Fig. 3 from Repected variancgV?)=C,~2 (the experimental value is
[12]. even larger, about 2)2while the variance fo¥,, is expected

to be about unity. The RSH in dimensionless form is still
VI. PDE EOR V given by Eq.(4), but the value ofC is now close to unity,
We saw in Secs. IV and V that the dissipation field is well r| 002

correlated with the velocity increments, although it falls
short of accounting for large increments, corresponding to
the tails. As seen from Fig.(), the values of the large With this value ofC, the values ofy in Eqg. (4) should be
velocity increments are approximately 2.5 time greater tharromparable-to—and not larger than—the increments.
corresponding values gf The situation is aggravated by the  Figure 4 depicts the PDF’s fov,. Here the PDF for
fact that, in order to account for the RSH in for@), the |V,|=3 is typically below that for the velocity increments.

C:
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FIG. 4. The PDF's fovV,, from run A. The denotations are the same as in Fig. 3.

This is especially true for the left wing@hat is, negative the right-hand tails are higher than the left-hand ones. This
values, which could be due to the fact that the left wings of observation is indeed confirmed quantitatively, and we will
the velocity increments PDF's are always higher than theeturn to it in Sec. VIII. One can claim for now that there are
right wings: due to the asymmetry of the PDF. Surprisingly,no tails for negative values of thé, distribution. However,
the V,, PDF definitely exhibits opposite asymmetry; that is, this statement is certainly not true for the right-hand wings,



PRE 58 REFINED SIMILARITY HYPOTHESIS AND ASYMMETRY . .. 1859

which practically coincide with the velocity increments dis- @ wo ®
tribution. A L ) A
The most important feature @f(V,|r) is that it becomes x x5 o

Variance
Variance

e % ¥ X X % x ¥k x ¥ X X

tatively in Secs. VIl and VIII. This trend, though, was al- = o ] or

ready apparent from Fig. 10 of RdfL0(e)], and Fig. 1 of

Ref.[15]. Thus, the PDF fol is not self-similar. S I R s
Some support for this statement was provided edrli&}, i ‘ , , . ,

where the conditional PDB(V|e, ,r) was shown to depend 00 Juee Tsee oo fee 1see

on g, in inertial range, instead of being independent, as re-

quired by the RSH. It can be seen from Fig&)&and 3b) of @ ' ' @ ‘ '
Ref.[11(a)], and Fig. Tb) of Ref.[11(b)], that the innermost 4 ] “‘//MW'

curves, that is, the PDF’s with the smallest variance, corre-
spond to the lowermost values ef, and vice versa. Pre- 121 1 T2B % % % % X X K K x x %]
x K K Kk K X

wider with growingr, at least in the region we studied. This szf LzWA
is apparent from the figure, and it will be confirmed quanti- S w kK X X X X X X X

sumably, this can be explained as follows. Recall that the: [ , « x = *

correlation coefficients in Fig. (b), as well as the ratio ol e 4 * ol d

(JuPy/{y), were calculated for the tail part of the PDF. Ac-

cording to all previous experimental resyli9—-15, the cor- I RS I R
relation is as good for the whole PDF. On the other hand, the [’ . , . i . . ,
ratio (|u|)/(y) is not as high for the main distribution; it is 00 e e oo e e
about 1.25 in our estimations, as opposed to 2.5 for the tail

part; see Fig. (b). We may expect that the low values of FIG. 5. The variancéV2) proves to be a function of distance

will correspond to the velocity increment distribution core, @nd it grows even faster than the cumulative second momgnt
whereas the higher values of will correspond to the tails. ©On the other hand, the cumulative mom¢¥(f). does not seem to
As we saw, the typical value ¢fl|/y becomes large only in ¢hange much.
the tails: therefore, the PDB(V|e,,r) is not expected to

have any tails for smalt,, while it would have them for o2=(u?),= f3
larger values ok, . This results in increasing variance with ¢ ¢
growing g, , as observed in Ref11].

u?p(u|r)du.
3

Recall that(u?)=1 by definition, and therefore the cumula-
VII. EVALUATION OF THE EVEN MOMENTS tive moment is less than Unity. If the PEFEU“) has no tails
(no intermittency, then the cumulative variance would be a
In principle, one can normalize E¢B) by increasing the constant, i.e., independent of although this constant is less
constantC: one can redefine the RSH as, say, than unity. The fact that this variance does depend oar-
., 3 responds to the existence of the tails, which are of decreasing
A =C"Vy(er)™, intensity with growing distance: therefore the variance grows
and asymptotically approaches unif,9]. The variance
(u?), can be seen to increase with distance in Fig. 5 in all
four runs; however, this dependence is less pronounced
than that for the variancgv2). Another comparison is made
Vv, on this figure with cumulative moment

whereC’>/C,, cf. Eq.(25). That would decrease the tails,
and the PDF fol,, could go even below the Gaussian dis-
tribution for large|V,|. Generally, any transformation

\Y

"
c 2 3 2
. . . . <Vn>c:j Vnp(vn|r)dua
with C'>1 would indeed result in a decrease of the variance -3

~1/C’2. However, the PDF is transformed as well, ) i
which does not seem to grow systematically, and for un

p(V|r)—C'p(V,C’ 1), this moment even decreases withThis might explain why
ther dependence is hard to detect if one measuresvthe
so that the variance PDF for values ofV,| that are not large enough. Thus the
) dependence of the variance should be attributed only to the
(V2)= ﬂ parts of the PDF wher/,,|>3, and therefore these parts can
g still be called “tails”, in spite of the fact that they can be

hidden by choosing the normalization constat suffi-
Therefore, if(V?) is a function ofr, then(V2) depends om ciently large(see the beginning of this section
in the same way, within the constantC1£. More evidence about the tails, which make an increasing

The variance is indeed a function of the distamceand  contribution as the distance increases, is that the flatness also

that can be seen from Fig. 5. The variaq®€) grows with  grows withr, as seen from Fig. 6. This trend of flatness
r in the range of distances considered here, and this is trugrowing with distance was observed earlier in Fi¢d)8of
for all four runs. For comparison, we also plot the cumula-Ref.[10(e)]. Of course, for very large distances, comparable
tive variance to the integral scalé, £,—(e), and the PDFp(V|r) would
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FIG. 6. FlatnesgVa)/(V3)2, for all runs. FIG. 7. The first and third moments &f. The first moment is

. . o o always positive, and it is slowly decreasing with distance. The third
approach a one-point velocity distribution which is close tomoment is typically positive. In order to check the sign of the
Gaussiar{9]. That is to say, botfV2) and the flatness will moments, the third moment for the velocity increments is also de-
decrease at that point at least, and will eventually approacpicted. For illustrative purposes, the plot of the latter is normalized
the Gaussian values. These two trends—an initially increasn such a way as to fit the figure, and therefore the units for it are
ing variance, as in Fig. 5, and then a decreasing variance-arbitrary. One can see that the moment obeys the Kolmogorov law:
were observed earlier; see FigbBof Ref.[10(e)]. The pres- the plot indeed looks like a straight line, and the values are nega-
ence of these two trends might explain why sometimes onlyive. The cumulative third moment behaves much more smoothly,
flatness decreasing with distance is obserasdin Fig. 4 of and it is always positive. The third moment fdrdistribution from
Ref.[14]), or sometimes just varying flatne&ss in Fig. 3b) the pipe turbulence is also added for comparison in pdnebs the
of Ref. [15]). In any case, th&/ moments deviate from a ranges of the distances are differésee Sec. )i the scale is also
constant, in violation of the RSH. We finally note that the Shown on this panel.
range chosen in this paper is still far from approachinghe
latter is estimated in Sec. Il, and this explains why we ob
serve only one trend of increasing flatness.

It is known that intermittencyand, in particular, flatnegs

increments. As a matter of fact, even the first moment does
not vanish, and it is positive, as seen in Fig. 7. The positive
first moment was observed earlier; see Fid¢a) 8of Ref.

decreases with, and therefore this behavior &, is coun-  [10®]. This is consistent with the negative correlation

terintuitive at least. Close inspection of Fig. 2 shows, how-?(U,¥). seen in Fig. (b). Indeed, in the framework of the
ever, that the tails of the PDF far decrease only slightly RSH, theV andy fields are statistically independent, and,
with r in this range. Only careful study of cumulative mo- therefore,

ments, etc., results in this conclusion. On the other hand, the o

tails for they distribution, already being quite below these of 0=(u)=C{V)Y). (26)
the velocity increments even on the smallest distdpemel ; } ; ; ; .
(@], are decreasing quite noticeably. Indeed, the cutoff of théb(;srg 's non-negative, the quantigy/) should vanish. There
y PDF occurredsee pane{a)] aty=5.5, while it is about 4 '

as seen in panéf). In fact, in the latter panel, the dissipation p(u,y)~(usdy)=C(V){(8y)?)=0,

field distribution is hardly singular. Thus the trend of de-

creasing tails fou distribution is less pronounced than the where sy=y—(y) However, this correlation is observed to
decreasing of the singularity for thedistribution. Roughly, be negative. Therefore, théandy fields are correlated, and
(Jul) stays constant, whiléy) falls off relatively quickly in  we have to write

this range. As a result, the distribution wfy becomes more

singular with increasing distance. This explains why the mo- 0=(u)=C(Vy)=C{{V)X(y) +(6Vdy)}
ments, and also the flatness, grow in this scale range, accord-
ing to Fig. 6. instead of Eq(26), and 6V=V— (V). Therefore,

VIIl. ODD MOMENTS AND ASYMMETRY (oVay)=—(VXy).

As we already noted in Sec. VI, the PDF fdris asym-  AsV is a quickly fluctuating quantitfanalogous tai), andy
metric, with an asymmetry opposite to that of the velocityis much more smooth, we can pres&has
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V=(V)+ 8V (V) ig&; poEE AR
o —— v ] ol

where V' is quickly fluctuating part, uncorrelated with the
y field. Thus,

Fifth moment
Fifth moment

(usy)=C(V) —<y>2—%+<5y2> - (@7

L L L
500 1000 1500

Now, the measured third momefy®) is positive. No won-
der: the quantitydy is limited from below,sy= —(y), while st
it can assume any positive value. Moreover, the fluctuations
dy are relatively small, so that, typicallydy?)~(y)?/4 [this
actually can be seen from Fig(dl], and therefore the only
positive term in the bracefEq. (27)]—the last one—is
small. Hence, the expression in braces is negative, and thus
Eq. (27) explains why(V)>0, as in Fig. 7, provided the

th moment
Fifth moment

(udy) correlation is negative; see Fig(hl. Comparison sl o) -] 0
with other studies at this point is somewhat ambiguous. In ‘ ‘ . ‘ ‘ R
some papers, a correlatign(u,e,=y®) is studied, rather A 00 pmeo e

thanp(u,y), as above, and it is not clear if the former can _ s )

also be expected to be negative, like the latter. It is indeed FIG. 8. The fifth momentV®). We depicted the moment ob-
negative in Fig. 5 of Ref.12], while it is positive in Fig. 2 of tained in two ways: both through the POKV|r), constructed
Ref.[11(a)], as well as in Fig. 12 of Ref10(e)]. It is note- above, and py direct calculatlon_ of this mo_ment from the data files.
worthy, however, that this correlation does not vanish any—The generalized structure function of the fifth order behaves analo-

way; that is to say, the correlation coefficient is a smoothgOUSIy to th‘.e variance: it increases with cf. Fig. 5. F'm.i”y’ the
. . . . cumulative fifth moment behaves analogously to the third one, and
function of r, and does not change sign for different dis-

. o A . .. it is positive as well.
tances, and is usually statistically significant. Indeed, in spite b

of its values[small compared with, say(|u|,y)], it is still direct way is given in Fig. 7b) for comparison. One can say
quite large compared with the coefficient for random num-that, qualitatively, the moment behaves the same way as in
bers with the same number of elements. run B.

The positive value of the first moment manifests the trend Further confirmation of this asymmetry, opposite to that
mentioned above in and that the PDF #éris asymmetric, of the velocity increments, comes from the fifth moment, see
and the right-hand wings are higher than the left-hand oneszig. 8. It is mostly positive. Recall that\,v°) is found to be
This becomes even more evident by studying odd momentsegative, as is the higher odd momeht¥], because the
of higher orders. Indeed, the third moment is predominantlynegative tails for the velocity increments PDF's are higher
positive in Fig. 7. Sometimes it becomes negative, althouglthan positive[9]. Analogously to the third moment, the fifth
it is still substantially above the Kolmogorov value?. This  one was calculated in two different ways, and both of them
result seems to be puzzling, because other studies gave negae depicted in Fig. 8 for comparison. It can be seen that
tive values ofV3) (although with some exceptions; see thethere is some difference between these two curves, and
discussion below in Sec.)XWe therefore obtained the mo- sometimes the difference is substantial, as for BunThis
ment by two different means. One recovered the value obnly means that excitations beyond those taken by the PDF
(V3 using the PDF’s fol. The other one calculated this (recall that the PDF was constructed fafj<8) play a role
moment simply by constructing the arrayy directly from  for the fifth moment at least, again emphasizing the role of
the data files. Both methods resulted in almost coincidinghe tails. The cumulative fifth moment behaves much more
plots for (V3) (Fig. 7 depicts this moment calculated from smoothly, and it is always positive. Finallf}V|®) behaves
direct constructioh In order to make sure that the signs arein a “normal” way, like e.g., the variance in Fig. 5. That is,
correct, we processed the third moment of the velocity increit grows with distance. Another feature becomes apparent
ments(A,v®) as well, within the same code that calculatesfrom Fig. 8, namely, that the curves show quite a large scat-
the PDF's and the moments f&t distribution. As an illus-  tering of data, and one may say that the convergence is poor.
tration, this is shown on Fig.(@). It is negative, of course, Indeed, these four curves from all runs look quite different.
and decreases linearly with distance, as it should, in accortdhis circumstance points again to the tails of thelistribu-
with the Kolmogorov law(13). Still another test is to con- tion: they correspond to rare events, and therefore exhibit
struct a cumulative third moment, covering about 98% ofstrong fluctuations.
events(less than 99% quoted above in Sec. IV, because the As mentioned above, this “wrong” asymmetry clearly
variance is now about 2, and we still consider events noindicates that there is a correlation betw&éandy fields; at
exceeding three standard deviationsugf and therefore re- least, the dissipation field, being non-negative, “knows” if
liable. The curves indeed look smoother than the full mo-V is positive or negative. We suggest some tentative expla-
ment, and the values are always positive. Finally, the thirchation for this asymmetry, opposite to that of the velocity
moment(V3) from the pipe turbulence dataalculated in a increments. We first recall that, in the framework of the
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RSH, the asymmetry of the velocity increments should resulsame. Therefore, as the distance increases, the values of the
in a corresponding asymmetry of thefield, as in Eq.(16). odd moments(properly normalized, of courgeapproach

As the PDFp(V|r) is unrelated to the intermittendyhat is,  these of the velocity increments; that is, they approach nega-
it is not supposed to possess any dailthis asymmetry tive values. Due to the “wrong” asymmetry @f(V|r), the
should be manifested at the core. This means that the contrddd moments are positive at small distances; however, as the
bution to the odd moments &f should come mainly from singularity of the dissipation field decreases, the odd mo-
the core. However, as we saw in Fig. 7, the third moment isnents “try” to become negative, and therefore, typically,
formed mainly by the tails: because the cumulative momenthey decrease with distance.

is much less than the full one. The same is true for the fifth
moment: as seen from Fig. 8, the cumulative moment is neg-
ligible. Direct inspection of the PDF cof€ig. 9) leads to the
same conclusion. Indeed, while the wideningpgti|r) with
growingr, or a decrease of the maximum, is noticeable, asin As mentioned, velocity increments are strongly fluctuat-
Fig. 5 from Ref.[8] (although here we consider a substan-ing, while the dissipation field, being smoothed out by aver-
tially smaller distance range than in RE8)]), nothing seems aging (2), changes much more slowly. Therefore, quite a
to happen to the PDF core @f(V,|r), although the odd substantial level of correlatiop(u,y), reported in all stud-
cumulative moments do decrease slightly with distance. Iries, looks quite amazing. It definitely provides a strong sup-
other words, if there is any asymmetry in the core, it is smallport for the RSH. As the fluctuations of tiyefield are sup-
and, in addition, it is opposite to that of the velocity incre- posed to be responsible for the intermittency, manifested by
ments. We also saw that the tails pfV|r) are asymmetric the velocity increment tails, a direct comparison of violent
in a "wrong” way as well, and, therefore, they cannot ac- events of the velocity increments with corresponding fluctua-
count for the “right” asymmetry of the velocity increments. tions of the dissipation field, given in Fig. 1, and also show-
In other words, the large positive values\6f exceed these ing a high correlation between these two fields, provides an
of |[V~|, opposite to the case for the increments:|>u™. additional and quite convincing argument in favor of the

IX. TOWARD A POSSIBLE RECONCILIATION
WITH THE RSH

As V is defined by Eq(8), we conclude that, typically, RSH. On the other hand, two deviations from the theory are
observed as well. These deviations can be summarized as
y >yt (280  follows.

(i) The V distribution has tails, responsible fordepen-

for largey. This means that the negative dissipation fielddence of the moments &f.
distribution is “more singular” than the positive one, in ac- (i) The V andy fields slightly correlate, resulting in a
cord with the ramp-model assumpti@®2). Thus the ramp “wrong” asymmetry of theV distribution.
model follows from the observed “wrong” asymmetry of  Presumably, the appearance of the tails, péintcan be
the V distribution. attributed to the fact that, although the dissipation field is

We now turn this statement around. That is, if the statiswell correlated with the velocity increments, it falls short of
tics for y* distributions are the same, then bathandV  explaining the magnitude: for violent events; /y*~2.5;
fields would be asymmetric in the same way, having negasee Fig. {b). That is to say that the dissipation field “is not
tive skewness. If, however, inequali@8) is satisfied—that singular enough.” Apparently, poirii) can be interpreted to
is, y* andy~ have different statistics, the latter distribution mean that the singularities of thye" fields are different.
being more singular—then the asymmetry of ¥healistribu- In order to treat the asymmetry in a more self-consistent
tion is reducedbecauseV is inversely proportional toy), ~ way, we may want to modify measut@), as in Ref.[21].
thus reducing the skewness. As a matter of fact, this skewlhat is, let
opposite to the velocity increment skewnesatweighsthe
latter, resulting in a nonvanishing first moment and positive
odd moments. Thus one may suggest that the ramp model X+r/2 .
explains the existing asymmetry of thefield. wE(x,r)= e(x)™ dx,

Recall, however, that both negative and positive dissipa- x-rlz
tion field singularities do not suffice to account for the RSH:
they both are “not singular enough,” as mentioned at the
end of Sec. VII. This explains why the momefj¥|°) be-  so that the mean measure reads
haves much the same way as the even moments in Fig. 5: it
grows with distance; see Fig. 8.

There is another quite persistent trend in Figs. 7 and 8: the 1
odd momentglecreasewith distance. Even the pipe turbu- ,ufz; wr(X,r), (29
lence data follow this trend. The only exception can be found
in Fig. 8(d) for the fifth moment calculated directly. In this
case, however, the data are quite scattered, and therefore less
reliable. This trend can be explained as follows. As the sincf. Eq. (2).
gularity of the dissipation field decreases with distance, the If m*>1, then the strength of the singularity increases.
V-field statistics become more and more similar to the velocindeed, ifD are the generalized dimensions for meas@dje
ity increment statistics: if the dissipation field is not singular,then the new generalized dimensions based on me&2@ire
then the statistics of these two fields would be essentially th@gm) , can be expressed through the old ones,
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FIG. 9. The PDF'(V,|r) andp(u|r) from runA are compared with the Gaussian distribution. The curves are denoted the same way
as in Figs. 3 and 4. The only difference with Fig. 4 is that here only the cores of the PDF'’s are depicted.
(30) D.—D™=(D,,—D.)(m—1).

D{™(q—1)=Dpg(mg—1)—Dy(m—1)q;
As the expression in the first parentheses is always positive

see formula3.2) from Ref.[20], adopted from Ref22]. It
follows from Eq.(30) that, asymptotically, [23], we have,
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>0 if m>1 Ao =VCoVn((e)) X P) b (35

D,—D{"= :
© e =<0 otherwise. ] )
In order to take into account the asymmetry, we write
Thus, indeed, the singularity strength increases with increas- e
ing m, and therefore we suppose that Sy (r)~r(t=®a=(D=Dg )(a-1), (36)
m=>1. (3D instead of Eq.(33) [6]. Direct measurements dTJf;i do

L confirm inequality(22), but for the dimension@{;’i , that is,
The measure satisfying E(B1) should decrease the gap be-

tween the level of the violent evens provided by the velocity Da’*<Da’+

increments on one side, and by the dissipation field, on the

other, as in Figs. 1 and 2. That should remove the tails fronh9]. This inequality is transferred back to EQ2) via trans-
the V distribution, because the large values of formation formula(30). The formulation of the RSH is now
V=u*/(Cy*) would be brought to the PDF core by trans- generalized, incorporating asymmetry,

forming them into . 13/ —\3p~\—1/3  *\p*
A= =VCVo((e)) ¥ (1 )PP ) P (37)

cf. Eq.(35). Note that the Kolmogorov law in this expression
is satisfied only for negative distribution: the only thing that
one has to make sure of is to keep the positive exponent

ui
ciyH)™ "

If, on the other handn®=m™, then one may expect that the ~.~ ' . .
asymmetry of th&/ distribution might remain “wrong,” that ¢3={3 =1 [6]. If expression(37) is indeed adequate, then

is, opposite to the velocity increments. In order to balancélifferent measures for positive and negatie as in Egs.
this, we suggest that (34), and(32), should rectify the asymmetry for thé distri-

bution, so that the odd moments are negative.
mt>m~>1. (32
X. DISCUSSION AND CONCLUSION

One may expect that Eq&31) and(32) would ensure that o _
the V,, distribution has no tails; that is, its PDF is indepen-  Of course, the modification of the RSH, given by Egs.
dent of the distance, and its asymmetry is such that the (29 and (37), and satisfying inequalities32), should be
third moment is negative. probed by direct measurements of the dissipation field; this is

Some indirect support for the modification of the measurdn our plans to do. The suggestions given in Sec. IX can be

is provided by a formula obtained for the measurgwhen ~ considered only guesses, although modificati¢ds) and
m*=1), (37) are in the spirit of the RSH, or, at least, “not worse”

than the modification suggested in REZ1].

W [*2 1 Experimental measurements of the velocity difference
Hmo= jx—rlz |w]dx, @r= DM PDF always showed that the PDF core is almost symmetric;
see, e.g., Ref.24]. Sometimes, even an opposite symmetry
Then is observed; for example, as noted in R@H], the skewness
is positive for the core. Thus the conclusion in R&f, that
s (r),vr(lfx)qf(DfDa’)(q*l) (33 the tails of the PDF make the main contribution to forming
q 1

the Kolmogorov law, is not at all surprising. If that is the

where « is so-called cancellation expone®0]. This expo- ~case, then, as mentioned in Secs. | and VIiI, thandy
nent is unambiguously defined by the Kolmogorov law; therfields should correlate, as is indeed the case: this is mani-

the RSH can be written in terms of themeasure, fested in positivg V"), wheren is an odd number.
On the other hand, however, the positive third moment
A *=CV((e)N) W wd) Pw, ; (34)  (V3)>0 does look surprising. In most previous papers is was

observed to be negative, although there were some excep-

cf. Eq. (25). Expression33) was obtainedvithoutinvoking  tions. For example, the skewness Yodoes become positive
the RSH, and only assuming that there is scaling for genelin some range of distances in FigicBof Ref.[10(e)], and
alized structure functions of arbitrary orders. The corre-some indications of positive skewness can be seen also in
sponding generalized dimensior83; can be expressed Fig. 3(a) of Ref.[15] (presumably, outside the inertial range,
through D, using the transformation formulé80), with  howevej. In our measurements, the third moment is cer-
m= 3, and thus recovering Eq$10) and (11). Of course, tainly positive, at least, for some range of distances; see Fig.
this does not mean that E(R3) replaces the RSH. The thing 7. When it is negative, it is still substantially larger tharg.
here is that formuld33) applies only to longitudinal gradi- This was confirmed by different approaches to obtaining the
ents, and so does the transfer form(88), whereas the RSH third moment, listed in Sec. VIII; the third moment from the
incorporates full dissipation. Nevertheless, this link may exipe turbulence behaves similarly to that from rBn We
plain quite a substantial correlation between the velocity incannot exclude the possibility that this difference from the
crements and the pseudodissipation field, whereas this correther two experimental measurements, and direct numerical
lation is less if one considers the transverse component of th@mulations (DNS), is an artifact of the pseudodissipation
dissipation tensdrl0(d)], see also Figs. 1 and 2 of R¢L3].  field (2); we use in our calculations. It seems more likely,

In the general case, using meas(28), we write though, that this difference can be explained as follows. As
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noted in Sec. VIII, the odd moments systematically decreaseonclude that a self-consistent treatment of the asymmetry in
with distance, and do become negative. At least, at very largthe framework of the RSH should involve some modifica-
distances they should be negative. This was explained by th@ons of the theory.

observation that the singularity of the dissipation field de- Further experimental studies are needed to confiom
creases with distance much faster than the singularity of thdiscard inequality(28). This actually means that the strength
velocity increments. Therefore, we may expect that thesef the singularity for the dissipation field corresponding to
two ranges—of positive and negative odd moments—wouldegative parts of the velocity increments is higher than that
appear if the data provide a large enough appropriate scatorresponding to positive parts; that is, it means that inequal-
range in the first place. In other words, the region where théty (22) is satisfied, which is the very essence of the ramp
odd moments o¥ are positive appears only if the Reynolds model[6]. However, even independently of the ramp model,
number is large enough, and that is provided by the atmoit is apparent for now that studying the asymmetry of turbu-
spheric turbulence data. In addition to that, we note thatence provides some additional insight into the problem of
(V3)>0 does notcontradict the Kolmogorov law. As men- intermittency.

tioned, this only indicates that there is some correlation be-
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