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Refined similarity hypothesis and asymmetry of turbulence

S. I. Vainshtein
Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637

~Received 5 January 1998!

An experimental study of atmospheric turbulence and turbulent pipe flow reveals some deviations from the
refined similarity hypothesis~RSH!, in addition to those already known. Special emphasis is placed on study-
ing the turbulence asymmetry, as it has proved to be a sensitive indicator of this deviation. It is found that, in
spite of good correlation between the velocity incrementsu and the dissipation fieldy, the typical amplitude
of the latter is appreciably smaller than that of the velocity increments for violent events. In the framework of
the RSH, the quantityV5u/y is supposed to be statistically independent of the dissipation. The study shows
that there is some weak dependence, manifested at least in a correlation between the sign ofV and the
amplitude of the dissipation fieldy. We suggest some modification of the measure in defining the dissipation
field, so that the asymmetry can be treated in a self-consistent way in the framework of the RSH.
@S1063-651X~98!04908-3#

PACS number~s!: 47.27.Ak, 47.27.Jv
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I. INTRODUCTION

Self-similar properties of turbulence have been studied
a long time. In particular, Kolmogorov suggested scal
laws for the velocity increment structure functionsD rv ~r is
the distance!, and that is now calledK41 theory@1#. It was
later understood that the theory implies relatively simple s
tistics. Roughly speaking, the predicted scaling correspo
to a nonintermittent system, and that in turn correspond
self-similar probability distributionsp(D rv/^(D rv)2&1/2ur ):
i.e., this function is independent ofr , and is universal.

On the other hand, the intermittency of the turbulen
corresponds to a deviation from simple self-similarity. Ko
mogorov’s refined similarity hypothesis~RSH! does allow
the intermittency@2#, and therefore the requirements of se
similarity are modified. Indeed, this time, the distributio
p(Vur ), where V5D rv/(r« r)

1/3, is supposed to be self
similar, that is, the distribution is an universal function,
particular independent ofr ~see also Ref.@3#!.

Strictly speaking, the Kolmogorov law@4#, found in 1941,
already implies that the probability distribution functio
~PDF! p(Vur ) does depend onr ; at least, it depends onr /ur u.
This deviationa priori has been considered to be small. Tr
ditionally, this asymmetry was interpreted as a manifesta
of turbulent energy cascade to the small scales@5#.

It was recently suggested that the asymmetry may be
related to the deviation from self-similarity@6–9#. It became
clear that the asymmetry is manifested mainly in the PD
tails @9#, responsible for the intermittency. Connecting t
intermittency of the increments with that of the dissipati
field y via the RSH, we conclude that the latter should
asymmetric as well~in fact, there are some experiment
indications that this is indeed the case@8#!. As y>0, and
therefore the sign of the velocity increments is defined by
V field only, the asymmetry fory implies that the value ofy
‘‘knows’’ about the sign of theV field; that is, there is some
correlation betweeny and theV field. However, this contra-
dicts the RSH, as in its framework these two fields should
statistically independent. Thus the asymmetry properties
turbulence have so far not been treated self-consistently.
PRE 581063-651X/98/58~2!/1851~15!/$15.00
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aim of the paper is to provide an experimental study of
asymmetry-related deviations from the RSH, i.e., the dev
tions from self-similarity of the distributionp(Vur ), suggest-
ing an attempt and self-consistent treatment of asymmetr
the framework of the RSH.

As, on the other hand, the asymmetry appeared to be
lated to the intermittency, this study may give some ad
tional insight into the problem of intermittency. In spite o
quite intensive recent experimental studies to verify the R
@10–15#, the asymmetry aspects of this problem were n
addressed in detail.

Section II is introductory as well, describing the metho
used in the paper. The asymmetry aspects of the RSH
given in Sec. III. A brief review of previous experiment
results relevant to this problem are given in Sec. IV. Some
the deviations from simple self-similarity of the velocity in
crements PDF listed in Ref.@9#, and in other previous papers
also correspond to the deviations from the RSH, and they
briefly repeated in this section, thus slightly overlapping w
Ref. @9#: otherwise the description would not be complete.
comparison of the dissipation field with that of the veloc
increments is given in Sec. V. The difference between th
is analyzed in Sec. VI. Sections VII and VIII are devoted
an evaluation of the moments ofV distribution. It is shown
that the moments are functions of the distancer , thus pre-
senting a deviation from the RSH. The odd moments sh
positive skewness, described in Sec. VIII, thus reveal
some correlation between theV field and the dissipation. A
possible way to reconcile with the RSH is suggested in S
IX. The key point is to modify the dissipation measure. F
nally, the main conclusions are given in Sec. X.

II. DESCRIPTION OF THE METHOD AND DENOTATIONS

The measurements of atmospheric turbulence were
formed at Yale University. The Taylor microscale Reynol
number is estimated to be 9540. The data set consistin
10 000 000 data points was divided into four files; below
will refer to them as runsA, B, C, andD. We use Taylor’s
hypothesis in interpreting the data; that is, the time serie
1851 © 1998 The American Physical Society
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1852 PRE 58S. I. VAINSHTEIN
treated as a one-dimensional cut of the process~for more
detail, see Ref.@9#!. We also use the data from a pipe turb
lence ~from Yale University as well!, with 2 000 000 data
points, and the Reynolds number is estimated to be 230
These data are used only once: just to check the third
ment ofV distribution ~see Sec. VIII!.

We study the statistics of velocity increments for differe
distancesr . All the distances are given in terms of Kolmog
orov scaleh. We measured the velocity increments for
distances, uniformly distributed betweenr /h5133.3 and
1600.0. All these distances are well inside the inertial ran
the integral scalel being estimated asl 586 671h. That was
for the atmospheric turbulence. As to the pipe experime
the inertial range is shorter~because the Reynolds number
less!, and therefore we picked another set of distanc
roughly corresponding to that for the atmospheric turb
lence. The smallest distance isr /h531.6, and the largest i
r /h5379.8, the intermediate points being uniformly distri
uted between these two. We will also user 0 , corresponding
to the smallest sample distance: some of the measurem
are provided by this.

The dissipation field is defined as usual~see, e.g., Ref.
@5#!,

« r5
1

r D E «~x!dx, ~1!

whereD is the dimension of space. As we deal with a on
dimensional cut of the process, we implyD51 in all the
formulas; the letterD is kept just for a possible generaliza
tion of the formulas used below. The dissipation is also
derstood as one dimensional~and sometimes called pseud
dissipation!; that is,

«515n~]xv !2,

~n is the kinematic viscosity!, which is relevant for isotropic
processes. To be more specific, we write Eq.~1! as follows:

« r5
1

r E
x2r /2

x1r /2

«~x!dx. ~2!

According to the refined similarity hypothesis@2#, the ve-
locity incrementD rv5v(x1r )2v(x) obeys the equation

D rv5V~« r r !1/35V~^«&r !1/3y, y5S « r

^«& D
1/3

, ~3!

whereV is a random function statistically independent of«.
In addition, the PDF forV is supposed to be a univers
function. In a somewhat more relaxed form, this universa
is understood as the independence of the distancer , as well
as the independence of the dissipation@3#. Let us write Eq.
~3! in dimensionless form,

u5CVy, ~4!

where

u5
D rv

^~D rv !2&1/2
0.
o-

t

e,

t,

s,
-

nts

-

-

y

and

C5
~^«&r !1/3

^~D rv !2&1/2. ~5!

In a fairly good approximation, the coefficientC is a con-
stant, andC51/C2

1/2, whereC2 is the Kolmogorov constant
C25260.4. In these calculations, however, the interm
tency correction is included, that is,

^~D rv !2&5C2~^«&r !2/3S r

l D
2m2

~6!

@3#. As m2520.04, the coefficientC is strictly speaking not
a constant, depending weakly onr :

C5
1

C2
1/2 S r

l D
20.02

. ~7!

Therefore, we will study the distribution function for

V5
u

Cy
. ~8!

The central part of a PDF, within three standard dev
tions, we call the ‘‘core.’’ Everything beyond this we wi
call ‘‘tails,’’ provided the values there are anomalous: eith
substantially exceeding Gaussian values, or anomalously
pending onr . The distributions containing tails we call ‘‘sin
gular.’’ We also recall that the tails usually correspond to t
intermittency. At least, that is the case for the velocity inc
ments PDF’s.

We will consider both structure functions,

Sn~r !5^D rv
n&;r jq, ~9!

wheren is a positive integer, and generalized structure fu
tions,

Sq~r !5^uD rvuq&;r zq5r q/32mq, ~10!

where the intermittency correctionsmq are defined by the
dissipation field

^« r
q/3&;r 2mq52~D2Dq/3!~q/321!, ~11!

andDq are the generalized dimensions@16#.
We can write the joint PDF’s

p~u,yur !5
1

Cy
pVS u

CyD py~yur !

or

p~u,Vur !5pV~V!
1

CuVu
pyS u

CVUr D .

As

^un&5Cn^Vn&^yn& and ^uuuq&5Cq^uVuq&^yq&,

we have
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Sn~r !5S2~r !n/2E unP~u,yur !du dy,

Sq~r !5S2~r !q/2E uuuqP~u,yur !du dy,
~12!

S25E ~D rv !2P~D rv,yur !dD rv dy.

It is clear from Eq.~12! that theK41 scaling@1# corre-
sponds to the case when« r is treated as a constant; that i
^yq& is independent ofr , or py(yur )5d(y21). More gen-
erally, theK41 scaling is recovered ifpy(yur ) is a function
of y only. Indeed, in that case,

Sn~r !5Cn~^«&r !nz1, Sq~r !5Cq~^«&r !qz1.

It follows from the Kolmogorov law@4# that, in the inertial
range, and forn53,

S3~r !52 4
5 ^«&r , ~13!

and therefore,z15 1
3 , recoveringK41.

In the framework of the RSH,py(yur ) might be a function
of both y andr , and it is assumed that all moments^yq& are
scaling;r 2mq. Therefore,

Sn~r !5CnS ^«r &n/3S r

l D
2mn

, Sq~r !5Cq~^«r &q/3S r

l D
2mq

.

~14!

Thus, in the framework of the RSH, the PDFpy(yur ) is not
just a function ofr . The distribution is supposed to besin-
gular. In particular, the flatness,

F~r !5
S4~r !

S2~r !2 ;S r

l D
2~D2D4/3!/32~D2D2/3!2/3

, ~15!

is larger than, say, the Gaussian value (5const53), and, as
seen from Eq.~15!, is a power law. As the exponent is neg
tive, this function is growing with decreasing distancer , and
it is maximal at the Kolmogorov scaleh. Large flatness
means, in turn, that the velocity increments are intermitte
In this case, the PDF for both the velocity increments and
y, that is, for the dissipation field, should contain tails. Th
the intermittency corrections appear in the framework of
RSH only due to the intermittency of the dissipation fieldy,
and hence, the PDFp(Vur ) is not expected to have any tail
Indeed, the PDF was suggested to be Gaussian, with s
small deviations due to asymmetry@11#. For this reason, in
this paper we focus mainly on the tails of the PDF’s.

It is obvious from Eq.~14! that the scaling exponents a
the same both for structure functions, and for generali
structure functions: the difference is only in prefactorsCn
andCq ~and they might be different for oddn!. In particular,
z35j351, that is, the intermittency correctionm3 vanishes.

III. RSH WITH EMPHASIS ON ASYMMETRY

It is clear from Eq.~12! that, becausey is non-negative,
all odd moments of the structure functions should vanish
the PDF pV(V) is an even function. However, it follow
t.
r

s
e

me

d

if

from the Kolmogorov law~13! that the third order structure
function does not vanish. There is also strong experime
evidence that all other odd moments also do not van
@17,6#. All this implies that pV(V) is asymmetric. On the
other hand, the PDF obviously obeys the rule

pV~2Vu2r !5pV~Vur !,

and therefore, if the PDF is independent ofr , then
pV(2V)5pV(V); that is, it should be symmetric. Since th
real PDF is not symmetric@see Eq.~13!#, we conclude that it
should have some dependence onr : at least, it should de-
pend on the sign ofr . That is,

p~Vur !5pv~V,g![pV~gV! where g5
r

ur u
, ~16!

cf. Eq.~16! in Ref. @9#. Thus, even if the RSH is satisfied, th
PDF p(Vur ) does depend onr , although weakly: it
‘‘knows’’ only about the sign ofr . In principle, however, the
PDF can be a universal~asymmetric! function, in the spirit of
the third Kolmogorov hypothesis. The aim of this paper is
verify if the PDF depends onr only weakly, as in Eq.~16!.

We will also consider positive and negative velocity i
crements separately. That means, we consider

Sq
1~r !5E

0

`

~D rv !qp~D rvur !dD rv,

Sq
2~r !5E

2`

0

uD rvuqp~D rvur !dD rv.

Then, analogously to Eq.~12!, we have

Sq
6~r !5S2~r !q/2^Vq&6^yq&,

~17!

^Vq&15E
0

`

VqpV~V!dV, ^Vq&25E
2`

0

uVuqpV~V!dV.

Obviously, in the framework of the RSH, eachSq
1(r ) func-

tion has the same scaling asSq
2(r ), and they both have the

same scaling asSq(r ): only the prefactors are different. In
addition,S3

6;r ; that is, they both possess the scaling of t
Kolmogorov law.

We denoteu1 andu2-positive and negative increment
correspondingly. These are functions ofx andr . We denote
corresponding dissipation fields byy6;

y15S 1

r E
x2r /2

x1r /2 «~xuu1Þ0!

^«&
dxD 1/3

,

y25S 1

r E
x2r /2

x1r /2 «~xuu2Þ0!

^«&
dxD 1/3

.

According to Eq.~17!,

Sq
2~r !

Sq
1~r !

5
^~u2!q&

^~u1!q&
5

^Vq&2

^Vq&1 5const. ~18!
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The structure functions of a low order, or in particular,
zeroth order, can be studied in detail, because of good st
tics. It follows from Eq.~17! that

S0
1~r !5E

0

`

pV~V!dV, S0
2~r !5E

2`

0

pV~V!dV, ~19!

so that these two structure functions should be constant
Finally, we consider flatness for positive and negative d

tributions separately, which is, in the framework of the RS

F6~r !5
S4

6~r !

S2
6~r !2 ;S r

l D
2~D2D4/3!/32~D2D2/3!2/3

. ~20!

Comparing with Eq.~15!, we see that ther dependence o
F6(r ) should coincide with that ofF(r ) ~although the pref-
actors could be different!.

We note that all asymmetry effects should disappear
the distance becomes large. That is, whenr approachesl , the
asymmetry is expected to decrease, and forr> l it should
vanish. Indeed, for large distances, the increment is a sum
two independent variables, and therefore the statistic
comes independent ofr , and, in particular, independent o
the sign of r ; see, e.g., Ref.@9#. This means that all odd
moments vanish, and the ratio in Eq.~18! becomes unity. In
particular,

S0
6→ 1

2 at r> l . ~21!

We now summarize the information concerning expec
properties of the distributions. The K41 theory correspon
to self-similar PDF for the velocity increments,

p~D rvur !⇒PS D rv

^D rv
2&1/2D ,

i.e., the PDF can be written as a function of one variab
instead of two~D rv, and r !; see, e.g., Ref.@9#. This would
correspond to nonintermittent turbulence. In the RSH,
intermittency is allowed, and now the distribution forV is
supposed to be universal; that is,

pS D rv
~« r r !1/3Ur D⇒PV~V!,

apart from a weakr dependence, as in Eq.~16!. This func-
tion PV(V) is not expected to possess any tails, and is
pected to be Gaussian-like, although not exactly, becaus
needed asymmetry.

The major difference between K41 and the RSH is allo
ing the intermittency in the latter. In spite of the fact that t
difference is of vital importance, some of the corollari
listed in this and previous sections, following from the RS
coincide with those that follow from requirements of se
similarity of the PDF for the velocity increments. For in
stance, as seen from Eq.~18!, the ratio of the positive and
negative parts of the increments should be constant; th
also true for self-similar PDF’s@9#. In other words, some o
the statistical properties are identically the same both for
K41 theory and for the RSH. In Sec. IV, we will have
repeat in part the analysis given in Ref.@9#, concerning the
is-
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comparison of these corollaries with experimental resu
adding to it a more complete interpretation.

IV. EXPERIMENTAL VALIDATION: BRIEF REVIEW
OF PREVIOUS RESULTS

Experimental studies and direct numerical simulatio
testing the RSH started only recently@10–15#. Basically,
there are strong supports for the RSH, both experiment
and numerically. However, some deviations from the h
pothesis were found as well, and we discuss these be
mostly in the next sections.

We are more interested in asymmetry-related matt
and, as the asymmetry is manifested mainly in the tails of
PDF’s, we are going to focus on these. The first predict
following from Eq.~14!, that the exponents for the odd ord
structure functions and generalized structure functions c
cide, generally fails: this statement holds only for the th
order; otherwise, for the higher orders,jn is systematically
larger thanzn @6#. This trend was explained in Ref.@6# in the
framework of the so-called ramp model. Further studies
plus-minus structure functions,Sq

6(r ), revealed that their ra-
tios are not constant, in violation of Eq.~18!; see Fig. 3 in
Ref. @7#. We note two types of deviations from a constant
this figure. First, there is a trend of decreasing~increasing!
ratio for q.1 (q,1) with increasing distance. Second, the
are large bumps on the curves. The first trend seems to
expected: all curves should approach unity for large d
tances; see the end of Sec. III. However, that should be
outsidethe inertial range, at very large distances, whereas
trend is observed inside the range. On the other hand,
quantity substantially exceeds unity at small distances, a
Fig. 3 in Ref. @7# for q.1, and it should asymptotically
approach unity at large distances, then one would natur
expect that this quantity would monotonously decrease
soon as possible.’’ In other words, it would be surprising
find a quantity that is strictly constant, substantially exce
ing unity all over the inertial range, and then decreasing r
idly at r & l . As the real quantity does follow ‘‘common
sense,’’ i.e., does decrease in inertial range, it suggest
idea that the weak violation of the RSH—that is, thatp(Vur )
does depend onr as in Eq.~16!—is indeed not as ‘‘inno-
cent’’ as it seems. Apparently, this violation, althougha pri-
ori seemingly weak, might result in substantial deviatio
from the RSH. This trend of decreasing~increasing! ratio
with growing r can be easily explained in the framework
the ramp model@6#. Indeed, if we suppose thatSq

1(r ) and
Sq

2(r ) scale differently, so that

Dq
2,Dq

1 , ~22!

then the ratio should decrease forq.1, and increase for
q,1, in both cases approaching unity: exactly as in Fig. 3
Ref. @7#; see also Fig. 2~a! in Ref. @9#.

Another comparison with the RSH is provided by th
measurements of the flatness. It is found that, indeed,
flatness decreases withr , as in Eq.~15!; however, the flat-
ness for positive and negative distributions does not foll
Eq. ~20!: see Fig. 1~a! in Ref. @9#. That is, ther dependence
is different for F1(r ) and F2(r ), and these two functions
differ from F(r ).
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We now return to the second type of deviation from
constant observed in Fig. 3 of Ref.@7#, namely, that the
curves are not smooth. This in turn returns us to the disc
sion of a more general observation that the odd mome
usually exhibit poor scaling, and quite scattered data;
e.g., Ref.@9#. As a well known example, we mention th
third momentS3(r ). Indeed, the scaling for the Kolmogoro
law @Eq. ~13!# is usually worse than the scaling forS3(r ), in
spite of the fact that the Kolmogorov law should be satisfi
a priori, while S3(r );r scaling is an assumption. The sim
plest explanation is that the core of the PDFp(D rvur ) ~that
is, about 99% of events! is approximately symmetric; see
e.g., Figs. 5 and 6 in Ref.@8#. Therefore, the overwhelming
majority of events makes a contribution to the generaliz
structure functionsSq(r )5Sq

1(r )1Sq
2(r ), providing a good

statistic, whereas the odd moments do not van
@Sn5Sn

1(r )2Sn
2(r )Þ0# due only to the asymmetry sup

plied by the tails, that is, only by 1% of events. Still, th
explanation is at least incomplete. The thing here is that
plus-minus structure functions also do not behave well,
definitely worse thanSq(r ) @9#. If we write Sq

6(r )5S̃q
6(r )

1nq
6(r ), whereS̃q

6(r ) corresponds to the ‘‘true’’ scaling, a
in Ref. @14#, and nq

6(r ) is a noise, appearing for one o
another reason, then we might expect that the noises
statistically independent for the plus and minus distributio
Then the error propagation would result in a summing up
the noises for these two distributions, and theref
Sq(r )5Sq

1(r )1Sq
2(r ) would behave worse thanSq

1(r ) and
Sq

2(r ) separately. As this is definitely not the case, it is a
parent thatnq

1(r ) and nq
2(r ) are correlated, and therefor

they should not be called ‘‘noises,’’ but rather ‘‘fluctua
tions.’’ Indeed, as observed in Ref.@8# for the lowest mo-
mentS0

6(r ), even a slightest increase inn0
1(r ) is accompa-

nied by decrease ofn0
2(r ), and vice versa, so that these tw

plots forS0
1(r ) and forS0

2(r ) are mirror symmetric~see Fig.
2 in Ref. @8#!. This can be explained as well: if the length
the accelerated part the ramp happens to be larger~smaller!
than usual, then it may happen only at the expense of
decelerated lag of the ramp, so that the latter has to
smaller~larger!. As a result, the fluctuations are canceled
the sumSq(r )5Sq

1(r )1Sq
2(r ), while they remain the sam

for each of the structure functionsSq
1(r ) and Sq

2(r ); they
sum up for the ratio~18!, giving the worst scaling. All this
behavior of the moment ratios points to substantial contri
tions of the PDF tails to the asymmetry.

As follows from Eq.~19!, the structure functions of zerot
order should be constant in the inertial range. On the o
hand, according to Eq.~21!, they should approach12 whenr
approaches the integral scale. However, since the va
S0

6(r 0) are different, and they differ substantially from12 ;
the curves ofS0

6(r ) do follow common sense. That is, the
vary monotonously with distance, only asymptotically a
proaching1

2 ; see Fig. 2~a! in Ref. @8#. The second trend o
increased fluctuations@as compared withS0(r )# is also no-
ticeable in this figure.

V. ANALYSIS OF THE DISSIPATION FIELD TAILS

As we saw, the key to understanding both intermitten
corrections and asymmetry lies in the tails of the PDF for
s-
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velocity increments, and therefore we consider them her
more detail. The tail increments forr /h5266.7 from runA
are depicted in Fig. 1~a!. It can be seen that the peaks ofuuu
practically coincide with those of the corresponding dissip
tion field y, although the amplitude of the latter falls short
that of the increments. To pursue this more quantitative
we plot the relevant correlations in Fig. 1~b!. We see that the
correlationsr(y1,u1), andr(y2,u2) are quite high. Recall
that the correlation coefficient is defined as

r~a,b!5
^~a2^a&!~b2^b&!&

A^~a2^a&!2&A^~b2^b&&!2&
.

The correlation coefficient~typically '0.5! can indeed been
considered as high, because, if we calculate the coeffic
for random numbers with the same number of eleme
~about 120 000 in all four runs!, this coefficient would be
two orders of magnitude less. It can be seen that typically
r(y2,u2) correlation is slightly better thanr(y1,u1). It is
also apparent from the figure that, in spite of this good c
relation, the typical value ofy is substantially less than tha
of uuu.

Further insight into this comparison gives Fig. 2. Here t
PDFp(yur ) is directly compared with the positive and neg
tive parts of the velocity increments PDF’s, for different di
tances. On the other hand, this PDF is compared with
nonsingular PDF’s, which would appear if the distribution
the velocity gradientv5]xv(x) is Gaussian. In the latte
case,

p~v!5
1

A2p
e2v2/2

FIG. 1. ~a! Depicted are all the tail events, that is, withuuu>3,
and corresponding dissipation fieldy, from the runA. It can be
seen thatu6 are well correlated withy6, although the peaks ofy
are substantially smaller. This is confirmed by~b!, where these
correlations are depicted for all runs. The ratios^u6&/^y6&, also
depicted, are indeed substantially larger than unity. Theu-y corre-
lation is negative, although small. All curves on this plot correspo
to the tails of the velocity increment PDF forr /h5266.7.
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FIG. 2. Probability densities extracted from runA. The PDF’s for the dissipation fieldy are compared with these for the positive a
negative velocity increments,p(u1ur ), andp(u2ur ). The distancesr are given in terms of Kolmogorov lengthh, while the assumed value
are expressed in terms ofuuu. Gv stands for a distribution with Gaussianv5]xv. Finally, we compare they distribution with the Gaussian
centered at̂ y&, and with variancêy2&-^y&2.
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~v is now normalized on its rms!, and therefore one of thes
two distributions, corresponding to the smallest distancer 0 ,
would read

p~yur 0!5Gv~y!5
3y1/2

A2p
e2y3/2. ~23!

The second nonsingular distribution should appear at la
distances. Indeed, the autocorrelation^v(x1r )v(x)& de-
creases substantially on one Taylor microscale lengthl.
Therefore, on distances substantially exceedingl, measure
~2! would present a sum of independent variables, and th
fore its distribution is normal as well:

p~yur .l!5
1

A2p^@y2^y&#2&
e2@y2^y&#2/2^@y2^y&#2&.

~24!

Thus, if v is Gaussian, then the PDFp(yur ) is a function
which lies in between these two distributions~23! and ~24!.
Any real distribution substantially exceeding these two
say,y>3, we can call a ‘‘tail,’’ and, if the tail exists, we ca
refer to this distribution as ‘‘singular.’’ These two distribu
tions happen to be quite close to each other for all conside
distances, as seen from Fig. 2, so that the comparison w
nonsingular distribution is straightforward. It is obvious fro
the figure that the dissipation field distribution is singu
indeed for all these distances. This fact is well known, ho
ever. Indeed, if thev distribution is Gaussian, then the aut
correlation ^«(x1r )«(x)& would decrease with distanc
even faster than the correlation̂v(x1r )v(x)&;r 24/3,
namely,^«(x1r )«(x)&;r 28/3 @18#. However, the real cor-
relation falls off much slower,̂ «(x1r )«(x)&;^«t

2;r 2m,
wherem50.2560.05; see, e.g., Ref.@3#. The exponentm is
called the intermittency exponent, because it is directly
lated to the generalized dimensionD2 , namely,D2512m
@19#; see also Ref.@20#.

Thus the dissipation field is singular. However, as se
from Fig. 2, it is ‘‘not singular enough.’’ Indeed, the tails
although they do exist, present some events up toy54 – 5,
and, after that, no events were observed~although the PDF
was constructed up toy58!, while there was a number o
events withuuu.5. This feature corresponds, of course,
the plots in Fig. 1. In addition, as seen from Fig. 2, the ta
at y>3 are still below the tails for the velocity increment
they are approximately one order of magnitude less.

Note the main trend of the dissipation field: the tails d
crease with increasing distance. This, of course, is expec
because the role of the intermittency decreases with grow
r , and this was observed before; see, e.g., Fig. 3 from R
@12#.

VI. PDF FOR V

We saw in Secs. IV and V that the dissipation field is w
correlated with the velocity increments, although it fa
short of accounting for large increments, corresponding
the tails. As seen from Fig. 1~b!, the values of the large
velocity increments are approximately 2.5 time greater th
corresponding values ofy. The situation is aggravated by th
fact that, in order to account for the RSH in form~4!, the
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values of y should be larger than the increments in
AC2'& times.

To see that theV distribution is indeed not satisfactory
we show one example of the PDF forV in Fig. 3. Obviously,
there are tails in the PDF forV: this is guaranteed becaus
the PDF p(Vur ) is above the velocity increments PDF’s
Also depicted isp(V,uuu>3ur ), the tail part of the PDF. It
behaves as a conditional PDF for the tailsp(Vuuuu>3,r )
@that is, for events depicted in Fig. 1~a!#, but normalized in
such a way that it can fit the plot: otherwise, the PDF sho
be 70 times higher. Indeed,p(V,uuu>3ur )5p(Vuuu
u>3,r )p(uuu>3ur ) and p(uuu>3ur )' 1

70 . We can see that
again, the tails of theV distribution are higher than these fo
the increments. This picture is typical of all distances giv
in Fig. 2, and is not repeated here. Of course, the large va
of increments,uuu.3, say, are not matched by equally larg
values ofy, as we saw above. Therefore, their ratio, defini
V, is still large, and that forms the tails of the PDF.

The singularity of theV distribution does not make sens
in the framework of the RSH, and therefore, not violating t
spirit of the RSH, we may as well write

D rv5AC2Vn~« r r !1/3 ~25!

instead of Eq.~3!. The new variableVn ,

Vn5
D rv

AC2~« r r !1/3
,

@cf. Eq. ~8!# seems to be more ‘‘natural.’’ Indeed, the e
pected variancê V2&5C2'2 ~the experimental value is
even larger, about 2.2!, while the variance forVn is expected
to be about unity. The RSH in dimensionless form is s
given by Eq.~4!, but the value ofC is now close to unity,

C5S r

l D
20.02

.

With this value ofC, the values ofy in Eq. ~4! should be
comparable-to—and not larger than—the increments.

Figure 4 depicts the PDF’s forVn . Here the PDF for
uVnu>3 is typically below that for the velocity increments

FIG. 3. The PDF’s from the data extracted from runA. The tails
for p(Vur ) distribution are clearly above the tails for the veloci
increments PDF.
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FIG. 4. The PDF’s forVn from run A. The denotations are the same as in Fig. 3.
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This is especially true for the left wings~that is, negative
values!, which could be due to the fact that the left wings
the velocity increments PDF’s are always higher than
right wings: due to the asymmetry of the PDF. Surprising
the Vn PDF definitely exhibits opposite asymmetry; that
f
e
,
,

the right-hand tails are higher than the left-hand ones. T
observation is indeed confirmed quantitatively, and we w
return to it in Sec. VIII. One can claim for now that there a
no tails for negative values of theVn distribution. However,
this statement is certainly not true for the right-hand win
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which practically coincide with the velocity increments di
tribution.

The most important feature ofp(Vnur ) is that it becomes
wider with growingr , at least in the region we studied. Th
is apparent from the figure, and it will be confirmed quan
tatively in Secs. VII and VIII. This trend, though, was a
ready apparent from Fig. 10 of Ref.@10~e!#, and Fig. 1 of
Ref. @15#. Thus, the PDF forV is not self-similar.

Some support for this statement was provided earlier@11#,
where the conditional PDFp(Vu« r ,r ) was shown to depend
on « r in inertial range, instead of being independent, as
quired by the RSH. It can be seen from Figs. 3~a! and 3~b! of
Ref. @11~a!#, and Fig. 7~b! of Ref. @11~b!#, that the innermost
curves, that is, the PDF’s with the smallest variance, co
spond to the lowermost values of« r , and vice versa. Pre
sumably, this can be explained as follows. Recall that
correlation coefficients in Fig. 1~b!, as well as the ratio
^uuu&/^y&, were calculated for the tail part of the PDF. A
cording to all previous experimental results@10–15#, the cor-
relation is as good for the whole PDF. On the other hand,
ratio ^uuu&/^y& is not as high for the main distribution; it i
about 1.25 in our estimations, as opposed to 2.5 for the
part; see Fig. 1~b!. We may expect that the low values of« r
will correspond to the velocity increment distribution cor
whereas the higher values of« r will correspond to the tails.
As we saw, the typical value ofuuu/y becomes large only in
the tails: therefore, the PDFp(Vu« r ,r ) is not expected to
have any tails for small« r , while it would have them for
larger values of« r . This results in increasing variance wit
growing « r , as observed in Ref.@11#.

VII. EVALUATION OF THE EVEN MOMENTS

In principle, one can normalize Eq.~8! by increasing the
constantC: one can redefine the RSH as, say,

D rv5C8Vn~« r r !1/3,

whereC8.AC2, cf. Eq. ~25!. That would decrease the tail
and the PDF forVn could go even below the Gaussian d
tribution for largeuVnu. Generally, any transformation

V→
Vn

C8
,

with C8.1 would indeed result in a decrease of the varian
;1/C82. However, the PDF is transformed as well,

p~Vur !→C8p~VnC8,r !,

so that the variance

^Vn
2&5

^V2&
C82 .

Therefore, if^V2& is a function ofr , then^Vn
2& depends onr

in the same way, within the constant 1/C82.
The variance is indeed a function of the distancer , and

that can be seen from Fig. 5. The variance^Vn
2& grows with

r in the range of distances considered here, and this is
for all four runs. For comparison, we also plot the cumu
tive variance
-

-

-

e

e

il

,

e

ue
-

sc
25^u2&c5E

23

3

u2p~uur !du.

Recall that̂ u2&51 by definition, and therefore the cumula
tive moment is less than unity. If the PDFp(uur ) has no tails
~no intermittency!, then the cumulative variance would be
constant, i.e., independent ofr , although this constant is les
than unity. The fact that this variance does depend onr cor-
responds to the existence of the tails, which are of decrea
intensity with growing distance: therefore the variance gro
and asymptotically approaches unity@8,9#. The variance
^u2&c can be seen to increase with distance in Fig. 5 in
four runs; however, thisr dependence is less pronounc
than that for the variancêVn

2&. Another comparison is mad
on this figure with cumulative moment

^Vn
2&c5E

23

3

Vn
2p~Vnur !du,

which does not seem to grow systematically, and for runD
this moment even decreases withr . This might explain why
the r dependence is hard to detect if one measures theVn
PDF for values ofuVnu that are not large enough. Thus ther
dependence of the variance should be attributed only to
parts of the PDF whereuVnu.3, and therefore these parts ca
still be called ‘‘tails’’, in spite of the fact that they can b
hidden by choosing the normalization constantC8 suffi-
ciently large~see the beginning of this section!.

More evidence about the tails, which make an increas
contribution as the distance increases, is that the flatness
grows with r , as seen from Fig. 6. This trend of flatne
growing with distance was observed earlier in Fig. 8~d! of
Ref. @10~e!#. Of course, for very large distances, compara
to the integral scalel , « r→^«&, and the PDFp(Vur ) would

FIG. 5. The variancêVn
2& proves to be a function of distancer ,

and it grows even faster than the cumulative second momentsc
2.

On the other hand, the cumulative moment^Vn
2&c does not seem to

change much.
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approach a one-point velocity distribution which is close
Gaussian@9#. That is to say, botĥVn

2& and the flatness will
decrease at that point at least, and will eventually appro
the Gaussian values. These two trends—an initially incre
ing variance, as in Fig. 5, and then a decreasing varianc
were observed earlier; see Fig. 8~b! of Ref. @10~e!#. The pres-
ence of these two trends might explain why sometimes o
flatness decreasing with distance is observed~as in Fig. 4 of
Ref. @14#!, or sometimes just varying flatness~as in Fig. 3~b!
of Ref. @15#!. In any case, theV moments deviate from a
constant, in violation of the RSH. We finally note that t
range chosen in this paper is still far from approachingl . The
latter is estimated in Sec. II, and this explains why we o
serve only one trend of increasing flatness.

It is known that intermittency~and, in particular, flatness!
decreases withr , and therefore this behavior ofVn is coun-
terintuitive at least. Close inspection of Fig. 2 shows, ho
ever, that the tails of the PDF foru decrease only slightly
with r in this range. Only careful study of cumulative m
ments, etc., results in this conclusion. On the other hand,
tails for they distribution, already being quite below these
the velocity increments even on the smallest distance@panel
~a!#, are decreasing quite noticeably. Indeed, the cutoff of
y PDF occurred@see panel~a!# at y55.5, while it is about 4
as seen in panel~f!. In fact, in the latter panel, the dissipatio
field distribution is hardly singular. Thus the trend of d
creasing tails foru distribution is less pronounced than th
decreasing of the singularity for they distribution. Roughly,
^uuu& stays constant, whilêy& falls off relatively quickly in
this range. As a result, the distribution ofu/y becomes more
singular with increasing distance. This explains why the m
ments, and also the flatness, grow in this scale range, acc
ing to Fig. 6.

VIII. ODD MOMENTS AND ASYMMETRY

As we already noted in Sec. VI, the PDF forV is asym-
metric, with an asymmetry opposite to that of the veloc

FIG. 6. FlatnesŝVn
4&/^Vn

2&2, for all runs.
ch
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increments. As a matter of fact, even the first moment d
not vanish, and it is positive, as seen in Fig. 7. The posit
first moment was observed earlier; see Fig. 8~a! of Ref.
@10~e!#. This is consistent with the negative correlatio
r(u,y), seen in Fig. 1~b!. Indeed, in the framework of the
RSH, theV and y fields are statistically independent, an
therefore,

05^u&5C^V&^y&. ~26!

As y is non-negative, the quantitŷV& should vanish. There-
fore,

r~u,y!;^udy&5C^V&^~dy!2&50,

wheredy5y2^y& However, this correlation is observed t
be negative. Therefore, theV andy fields are correlated, and
we have to write

05^u&5C^Vy&5C$^V&^y&1^dVdy&%

instead of Eq.~26!, anddV5V2^V&. Therefore,

^dVdy&52^V&^y&.

As V is a quickly fluctuating quantity~analogous tou!, andy
is much more smooth, we can presentV as

FIG. 7. The first and third moments ofV. The first moment is
always positive, and it is slowly decreasing with distance. The th
moment is typically positive. In order to check the sign of t
moments, the third moment for the velocity increments is also
picted. For illustrative purposes, the plot of the latter is normaliz
in such a way as to fit the figure, and therefore the units for it
arbitrary. One can see that the moment obeys the Kolmogorov
the plot indeed looks like a straight line, and the values are ne
tive. The cumulative third moment behaves much more smoot
and it is always positive. The third moment forV distribution from
the pipe turbulence is also added for comparison in panel~b!; as the
ranges of the distances are different~see Sec. II!, the scale is also
shown on this panel.
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V5^V&1dV82^V&
^y&dy

^dy2&
,

wheredV8 is quickly fluctuating part, uncorrelated with th
y field. Thus,

^udy&5C^V&H 2^y&22
^y&^dy3&

^dy2&
1^dy2&J . ~27!

Now, the measured third moment^dy3& is positive. No won-
der: the quantitydy is limited from below,dy>2^y&, while
it can assume any positive value. Moreover, the fluctuati
dy are relatively small, so that, typically,^dy2&'^y&2/4 @this
actually can be seen from Fig. 1~a!#, and therefore the only
positive term in the braces@Eq. ~27!#—the last one—is
small. Hence, the expression in braces is negative, and
Eq. ~27! explains why^V&.0, as in Fig. 7, provided the
^udy& correlation is negative; see Fig. 1~b!. Comparison
with other studies at this point is somewhat ambiguous
some papers, a correlationr(u,« r5y3) is studied, rather
than r(u,y), as above, and it is not clear if the former c
also be expected to be negative, like the latter. It is ind
negative in Fig. 5 of Ref.@12#, while it is positive in Fig. 2 of
Ref. @11~a!#, as well as in Fig. 12 of Ref.@10~e!#. It is note-
worthy, however, that this correlation does not vanish a
way; that is to say, the correlation coefficient is a smo
function of r , and does not change sign for different d
tances, and is usually statistically significant. Indeed, in s
of its values@small compared with, say,r(uuu,y)#, it is still
quite large compared with the coefficient for random nu
bers with the same number of elements.

The positive value of the first moment manifests the tre
mentioned above in and that the PDF forV is asymmetric,
and the right-hand wings are higher than the left-hand on
This becomes even more evident by studying odd mom
of higher orders. Indeed, the third moment is predominan
positive in Fig. 7. Sometimes it becomes negative, altho
it is still substantially above the Kolmogorov value2 4

5 . This
result seems to be puzzling, because other studies gave n
tive values of̂ V3& ~although with some exceptions; see t
discussion below in Sec. X!. We therefore obtained the mo
ment by two different means. One recovered the value
^V3& using the PDF’s forV. The other one calculated thi
moment simply by constructing the arrayu/y directly from
the data files. Both methods resulted in almost coincid
plots for ^V3& ~Fig. 7 depicts this moment calculated fro
direct construction!. In order to make sure that the signs a
correct, we processed the third moment of the velocity inc
ments^D rv

3& as well, within the same code that calculat
the PDF’s and the moments forV distribution. As an illus-
tration, this is shown on Fig. 7~a!. It is negative, of course
and decreases linearly with distance, as it should, in acc
with the Kolmogorov law~13!. Still another test is to con
struct a cumulative third moment, covering about 98%
events~less than 99% quoted above in Sec. IV, because
variance is now about 2, and we still consider events
exceeding three standard deviations ofu!, and therefore re-
liable. The curves indeed look smoother than the full m
ment, and the values are always positive. Finally, the th
moment^V3& from the pipe turbulence data~calculated in a
s
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direct way! is given in Fig. 7~b! for comparison. One can sa
that, qualitatively, the moment behaves the same way a
run B.

Further confirmation of this asymmetry, opposite to th
of the velocity increments, comes from the fifth moment, s
Fig. 8. It is mostly positive. Recall that^D rv

5& is found to be
negative, as is the higher odd moments@17#, because the
negative tails for the velocity increments PDF’s are high
than positive@9#. Analogously to the third moment, the fift
one was calculated in two different ways, and both of th
are depicted in Fig. 8 for comparison. It can be seen t
there is some difference between these two curves,
sometimes the difference is substantial, as for runD. This
only means that excitations beyond those taken by the P
~recall that the PDF was constructed foruVu<8! play a role
for the fifth moment at least, again emphasizing the role
the tails. The cumulative fifth moment behaves much m
smoothly, and it is always positive. Finally,^uVu5& behaves
in a ‘‘normal’’ way, like e.g., the variance in Fig. 5. That is
it grows with distance. Another feature becomes appar
from Fig. 8, namely, that the curves show quite a large sc
tering of data, and one may say that the convergence is p
Indeed, these four curves from all runs look quite differe
This circumstance points again to the tails of theV distribu-
tion: they correspond to rare events, and therefore exh
strong fluctuations.

As mentioned above, this ‘‘wrong’’ asymmetry clear
indicates that there is a correlation betweenV andy fields; at
least, the dissipation fieldy, being non-negative, ‘‘knows’’ if
V is positive or negative. We suggest some tentative ex
nation for this asymmetry, opposite to that of the veloc
increments. We first recall that, in the framework of t

FIG. 8. The fifth moment̂ V5&. We depicted the moment ob
tained in two ways: both through the PDFp(Vur ), constructed
above, and by direct calculation of this moment from the data fi
The generalized structure function of the fifth order behaves an
gously to the variance: it increases withr , cf. Fig. 5. Finally, the
cumulative fifth moment behaves analogously to the third one,
it is positive as well.
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RSH, the asymmetry of the velocity increments should re
in a corresponding asymmetry of theV field, as in Eq.~16!.
As the PDFp(Vur ) is unrelated to the intermittency~that is,
it is not supposed to possess any tails!, this asymmetry
should be manifested at the core. This means that the co
bution to the odd moments ofV should come mainly from
the core. However, as we saw in Fig. 7, the third momen
formed mainly by the tails: because the cumulative mom
is much less than the full one. The same is true for the fi
moment: as seen from Fig. 8, the cumulative moment is n
ligible. Direct inspection of the PDF core~Fig. 9! leads to the
same conclusion. Indeed, while the widening ofp(uur ) with
growingr , or a decrease of the maximum, is noticeable, a
Fig. 5 from Ref.@8# ~although here we consider a substa
tially smaller distance range than in Ref.@8#!, nothing seems
to happen to the PDF core ofp(Vnur ), although the odd
cumulative moments do decrease slightly with distance
other words, if there is any asymmetry in the core, it is sm
and, in addition, it is opposite to that of the velocity incr
ments. We also saw that the tails ofp(Vur ) are asymmetric
in a ‘‘wrong’’ way as well, and, therefore, they cannot a
count for the ‘‘right’’ asymmetry of the velocity increments
In other words, the large positive values ofV1 exceed these
of uV2u, opposite to the case for the increments:uu2u.u1.
As V is defined by Eq.~8!, we conclude that, typically,

y2.y1 ~28!

for large y. This means that the negative dissipation fie
distribution is ‘‘more singular’’ than the positive one, in a
cord with the ramp-model assumption~22!. Thus the ramp
model follows from the observed ‘‘wrong’’ asymmetry o
the V distribution.

We now turn this statement around. That is, if the sta
tics for y6 distributions are the same, then bothu and V
fields would be asymmetric in the same way, having ne
tive skewness. If, however, inequality~28! is satisfied—that
is, y1 andy2 have different statistics, the latter distributio
being more singular—then the asymmetry of theV distribu-
tion is reduced~becauseV is inversely proportional toy!,
thus reducing the skewness. As a matter of fact, this sk
opposite to the velocity increment skewness,outweighsthe
latter, resulting in a nonvanishing first moment and posit
odd moments. Thus one may suggest that the ramp m
explains the existing asymmetry of theV field.

Recall, however, that both negative and positive dissi
tion field singularities do not suffice to account for the RS
they both are ‘‘not singular enough,’’ as mentioned at t
end of Sec. VII. This explains why the moment^uVu5& be-
haves much the same way as the even moments in Fig.
grows with distance; see Fig. 8.

There is another quite persistent trend in Figs. 7 and 8:
odd momentsdecreasewith distance. Even the pipe turbu
lence data follow this trend. The only exception can be fou
in Fig. 8~d! for the fifth moment calculated directly. In thi
case, however, the data are quite scattered, and therefor
reliable. This trend can be explained as follows. As the s
gularity of the dissipation field decreases with distance,
V-field statistics become more and more similar to the vel
ity increment statistics: if the dissipation field is not singul
then the statistics of these two fields would be essentially
lt
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same. Therefore, as the distance increases, the values o
odd moments~properly normalized, of course! approach
these of the velocity increments; that is, they approach ne
tive values. Due to the ‘‘wrong’’ asymmetry ofp(Vur ), the
odd moments are positive at small distances; however, as
singularity of the dissipation field decreases, the odd m
ments ‘‘try’’ to become negative, and therefore, typicall
they decrease with distance.

IX. TOWARD A POSSIBLE RECONCILIATION
WITH THE RSH

As mentioned, velocity increments are strongly fluctu
ing, while the dissipation field, being smoothed out by av
aging ~2!, changes much more slowly. Therefore, quite
substantial level of correlationr(u,y), reported in all stud-
ies, looks quite amazing. It definitely provides a strong s
port for the RSH. As the fluctuations of they field are sup-
posed to be responsible for the intermittency, manifested
the velocity increment tails, a direct comparison of viole
events of the velocity increments with corresponding fluct
tions of the dissipation field, given in Fig. 1, and also sho
ing a high correlation between these two fields, provides
additional and quite convincing argument in favor of t
RSH. On the other hand, two deviations from the theory
observed as well. These deviations can be summarize
follows.

~i! The V distribution has tails, responsible forr depen-
dence of the moments ofV.

~ii ! The V and y fields slightly correlate, resulting in a
‘‘wrong’’ asymmetry of theV distribution.

Presumably, the appearance of the tails, point~i!, can be
attributed to the fact that, although the dissipation field
well correlated with the velocity increments, it falls short
explaining the magnitude: for violent events,u6/y6'2.5;
see Fig. 1~b!. That is to say that the dissipation field ‘‘is no
singular enough.’’ Apparently, point~ii ! can be interpreted to
mean that the singularities of they6 fields are different.

In order to treat the asymmetry in a more self-consist
way, we may want to modify measure~2!, as in Ref.@21#.
That is, let

m6~x,r !5E
x2r /2

x1r /2

«~x!m6
dx,

so that the mean measure reads

m r
65

1

r
m6~x,r !, ~29!

cf. Eq. ~2!.
If m6.1, then the strength of the singularity increas

Indeed, ifDq are the generalized dimensions for measure~2!,
then the new generalized dimensions based on measure~29!,
Dq

(m) , can be expressed through the old ones,
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FIG. 9. The PDF’sp(Vnur ) andp(uur ) from run A are compared with the Gaussian distribution. The curves are denoted the sam
as in Figs. 3 and 4. The only difference with Fig. 4 is that here only the cores of the PDF’s are depicted.
itive
Dq
~m!~q21!5Dmq~mq21!2Dm~m21!q; ~30!

see formula~3.2! from Ref. @20#, adopted from Ref.@22#. It
follows from Eq.~30! that, asymptotically,
D`2D`
~m!5~Dm2D`!~m21!.

As the expression in the first parentheses is always pos
@23#, we have,
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D`2D`
~m!5 H .0

<0
if m.1
otherwise.

Thus, indeed, the singularity strength increases with incre
ing m, and therefore we suppose that

m6.1. ~31!

The measure satisfying Eq.~31! should decrease the gap b
tween the level of the violent evens provided by the veloc
increments on one side, and by the dissipation field, on
other, as in Figs. 1 and 2. That should remove the tails fr
the V distribution, because the large values
V5u6/(Cy6) would be brought to the PDF core by tran
forming them into

u6

C~y6!m6 .

If, on the other hand,m15m2, then one may expect that th
asymmetry of theV distribution might remain ‘‘wrong,’’ that
is, opposite to the velocity increments. In order to balan
this, we suggest that

m1.m2.1. ~32!

One may expect that Eqs.~31! and~32! would ensure that
the Vn distribution has no tails; that is, its PDF is indepe
dent of the distancer , and its asymmetry is such that th
third moment is negative.

Some indirect support for the modification of the meas
is provided by a formula obtained for thev measure~when
m65 1

2 !,

mv5E
x2r /2

x1r /2

uvudx, v r5
1

r D mv.

Then

Sq~r !;r ~12k!q2~D2Dq
v

!~q21!, ~33!

wherek is so-called cancellation exponent@20#. This expo-
nent is unambiguously defined by the Kolmogorov law; th
the RSH can be written in terms of thev measure,

D rv
65AC2Vn~^«&r !1/3^v r

3&21/3v r ; ~34!

cf. Eq. ~25!. Expression~33! was obtainedwithout invoking
the RSH, and only assuming that there is scaling for gen
alized structure functions of arbitrary orders. The cor
sponding generalized dimensionsDq

v can be expresse
through Dq , using the transformation formula~30!, with
m5 1

2 , and thus recovering Eqs.~10! and ~11!. Of course,
this does not mean that Eq.~33! replaces the RSH. The thin
here is that formula~33! applies only to longitudinal gradi
ents, and so does the transfer formula~30!, whereas the RSH
incorporates full dissipation. Nevertheless, this link may
plain quite a substantial correlation between the velocity
crements and the pseudodissipation field, whereas this c
lation is less if one considers the transverse component o
dissipation tensor@10~d!#, see also Figs. 1 and 2 of Ref.@13#.

In the general case, using measure~29!, we write
s-

y
e

m
f

e

-

e

n

r-
-

-
-
re-
he

D rv5AC2Vn~^«&r !1/3^m r
3p&21/3m r

p . ~35!

In order to take into account the asymmetry, we write

Sq
6~r !;r ~12k!q2~D2Dq

v6
!~q21!, ~36!

instead of Eq.~33! @6#. Direct measurements ofDq
v6 do

confirm inequality~22!, but for the dimensionsDq
v6 , that is,

Dq
v2,Dq

v1

@9#. This inequality is transferred back to Eq.~22! via trans-
formation formula~30!. The formulation of the RSH is now
generalized, incorporating asymmetry,

D rv
65AC2Vn~^«&r !1/3^~m r

2!3p2
&21/3~m r

6!p6
; ~37!

cf. Eq.~35!. Note that the Kolmogorov law in this expressio
is satisfied only for negative distribution: the only thing th
one has to make sure of is to keep the positive expon
z3

1>z3
251 @6#. If expression~37! is indeed adequate, the

different measures for positive and negativeV, as in Eqs.
~34!, and~32!, should rectify the asymmetry for theV distri-
bution, so that the odd moments are negative.

X. DISCUSSION AND CONCLUSION

Of course, the modification of the RSH, given by Eq
~29! and ~37!, and satisfying inequalities~32!, should be
probed by direct measurements of the dissipation field; thi
in our plans to do. The suggestions given in Sec. IX can
considered only guesses, although modifications~35! and
~37! are in the spirit of the RSH, or, at least, ‘‘not worse
than the modification suggested in Ref.@21#.

Experimental measurements of the velocity differen
PDF always showed that the PDF core is almost symme
see, e.g., Ref.@24#. Sometimes, even an opposite symme
is observed; for example, as noted in Ref.@24#, the skewness
is positive for the core. Thus the conclusion in Ref.@9#, that
the tails of the PDF make the main contribution to formi
the Kolmogorov law, is not at all surprising. If that is th
case, then, as mentioned in Secs. I and VIII, theV and y
fields should correlate, as is indeed the case: this is m
fested in positivê Vn&, wheren is an odd number.

On the other hand, however, the positive third mom
^V3&.0 does look surprising. In most previous papers is w
observed to be negative, although there were some ex
tions. For example, the skewness forV does become positive
in some range of distances in Fig. 8~c! of Ref. @10~e!#, and
some indications of positive skewness can be seen als
Fig. 3~a! of Ref. @15# ~presumably, outside the inertial rang
however!. In our measurements, the third moment is c
tainly positive, at least, for some range of distances; see
7. When it is negative, it is still substantially larger than2 4

5 .
This was confirmed by different approaches to obtaining
third moment, listed in Sec. VIII; the third moment from th
pipe turbulence behaves similarly to that from runB. We
cannot exclude the possibility that this difference from t
other two experimental measurements, and direct nume
simulations~DNS!, is an artifact of the pseudodissipatio
field ~2!; we use in our calculations. It seems more like
though, that this difference can be explained as follows.
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noted in Sec. VIII, the odd moments systematically decre
with distance, and do become negative. At least, at very la
distances they should be negative. This was explained by
observation that the singularity of the dissipation field d
creases with distance much faster than the singularity of
velocity increments. Therefore, we may expect that th
two ranges—of positive and negative odd moments—wo
appear if the data provide a large enough appropriate s
range in the first place. In other words, the region where
odd moments ofV are positive appears only if the Reynold
number is large enough, and that is provided by the atm
spheric turbulence data. In addition to that, we note t
^V3&.0 does notcontradict the Kolmogorov law. As men
tioned, this only indicates that there is some correlation
tween theV field and the dissipation field, so that these tw
random processes are not completely statistically indep
dent.

Substantially high correlation between the velocity inc
ments and the dissipation field, reported in all previous
pers and in the present one, implies that the RSH does w
although some deviations from it were observed. In parti
lar, studying the asymmetry aspects of the RSH, we hav
il

ys

y

e
e

he
-
e
e
d
le
e

o-
t

-

n-

-
-

rk,
-
to

conclude that a self-consistent treatment of the asymmetr
the framework of the RSH should involve some modific
tions of the theory.

Further experimental studies are needed to confirm~or
discard! inequality~28!. This actually means that the streng
of the singularity for the dissipation field corresponding
negative parts of the velocity increments is higher than t
corresponding to positive parts; that is, it means that ineq
ity ~22! is satisfied, which is the very essence of the ra
model@6#. However, even independently of the ramp mod
it is apparent for now that studying the asymmetry of turb
lence provides some additional insight into the problem
intermittency.
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